MATH 403 FALL 2021: QUIZ 1 SOLUTION
 DATE: SEP 1, 2021

(a) (4 points) Let $P, A, B \in \mathbb{R}^{2}$. Write down the definition of $P \in \ell_{A B}$.

Solution. $P \in \ell_{A B}$ if and only if there exists $t \in \mathbb{R}$ such that $P=(1-t) A+t B$.
(b) (4 points) Let $A, B, C, D \in \mathbb{R}^{2}$. Write down the definition of $\ell_{A B} / / \ell_{C D}$.

Solution. $\ell_{A B} / / \ell_{C D}$ if and only if there exists t such that $(D-C)=t(B-A)$.
(c) (2 points) Let $A, B, C, D \in \mathbb{R}^{2}$. Assume $\ell_{A B}$ and $\ell_{C D}$ are parallel. Show that if there exists a point $P \in \mathbb{R}^{2}$ such that $P \in \ell_{A B} \cap \ell_{C D}$, then $C \in \ell_{A B}$.

Solution. Since $\ell_{A B}$ and $\ell_{C D}$ are parallel, there exists $t \in \mathbb{R}$ such that $(D-C)=t(B-A)$. Since $P \in \ell_{A B} \cap \ell_{C D}$, we have $r, s \in \mathbb{R}$ such that $P=(1-r) A+r B=(1-s) C+s D$. Thus,

$$
\begin{aligned}
A+r(B-A) & =C+s(D-C)=C+t s(B-A), \\
C & =A+(r-t s)(B-A)=(1-(r-t s)) A+(r-t s) B .
\end{aligned}
$$

By definition, we conclude that $C \in \ell_{A B}$.

