MATH 403 FALL 2021: QUIZ 1 SOLUTION DATE: SEP 1, 2021

(a) (4 points) Let $P, A, B \in \mathbb{R}^2$. Write down the definition of $P \in \ell_{AB}$.

Solution. $P \in \ell_{AB}$ if and only if there exists $t \in \mathbb{R}$ such that P = (1 - t)A + tB.

(b) (4 points) Let $A, B, C, D \in \mathbb{R}^2$. Write down the definition of $\ell_{AB} / / \ell_{CD}$.

Solution. $\ell_{AB} / / \ell_{CD}$ if and only if there exists *t* such that (D - C) = t(B - A).

(c) (2 points) Let $A, B, C, D \in \mathbb{R}^2$. Assume ℓ_{AB} and ℓ_{CD} are parallel. Show that if there exists a point $P \in \mathbb{R}^2$ such that $P \in \ell_{AB} \cap \ell_{CD}$, then $C \in \ell_{AB}$.

Solution. Since ℓ_{AB} and ℓ_{CD} are parallel, there exists $t \in \mathbb{R}$ such that (D - C) = t(B - A). Since $P \in \ell_{AB} \cap \ell_{CD}$, we have $r, s \in \mathbb{R}$ such that P = (1 - r)A + rB = (1 - s)C + sD. Thus,

$$A + r(B - A) = C + s(D - C) = C + ts(B - A),$$

$$C = A + (r - ts)(B - A) = (1 - (r - ts))A + (r - ts)B.$$

By definition, we conclude that $C \in \ell_{AB}$.