MATH 403 LECTURE NOTE
 WEEK 5

DAESUNG KIM

1. Translations and Central dilatations (SEC 2.1-2)

Consider an assignment α from the set of points of the plane to itself. We call α a map or a correspondence. If α assigns a point X to Y, we use the notation $\alpha(X)=Y$. We say two maps α and β are equal if $\alpha(X)=$ $\beta(X)$ for all $X \in \mathbb{R}^{2}$.
Definition 1.1. (1) A map $\alpha: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is called one-to-one if $\alpha(X)=\alpha\left(X^{\prime}\right)$ implies $X=X^{\prime}$.
(2) A map $\alpha: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is called onto if for every $Y \in \mathbb{R}^{2}$, there exists a point X such that $\alpha(X)=Y$.
(3) A map $\alpha: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is called bijection (or permutation, or transformation) if it is one-to-one and onto.

Definition 1.2 (Composition). Let α, β be two maps from \mathbb{R}^{2} to \mathbb{R}^{2}. The composition $\alpha \beta=\alpha \circ \beta$ is the map from \mathbb{R}^{2} to itself, defined by

$$
\alpha \beta(X)=\alpha \circ \beta(X)=\alpha(\beta(X)), \quad X \in \mathbb{R}^{2} .
$$

Definition 1.3 (Inverse). Let α be a bijection map from \mathbb{R}^{2} to itself. Then, the inverse map $\alpha^{-1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is the map satisfies $\alpha \alpha^{-1}=\alpha^{-1} \alpha=\iota=$ Id.
Definition 1.4 (Image of maps). Let α be a map from \mathbb{R}^{2} to itself and S be a subset of \mathbb{R}^{2}. The image of S under α is defined by

$$
\alpha(S)=\{\alpha(X): X \in S\}
$$

Definition 1.5 (Translations). Let $A \in \mathbb{R}^{2}$. The translation by A, denoted by $\tau_{A}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, is defined by

$$
\tau_{A}(X)=X+A, \quad X \in \mathbb{R}^{2} .
$$

Proposition 1.6. Let $A, B \in \mathbb{R}^{2}$.
(1) The translation τ_{A} is one-to-one and onto.
(2) $\tau_{A} \tau_{B}=\tau_{A+B}$.
(3) $\tau_{A}^{-1}=\tau_{-A}$.
(4) τ_{A} maps a line ℓ to a line $\tau_{A}(\ell)$, and $\tau_{A}(\ell) / / \ell$.
(5) For fixed $B, C \in \mathbb{R}^{2}$, there exists a unique A such that $\tau_{A}(B)=C$.

Definition 1.7 (Central dilatations). Let r be a nonzero number. The central dilatation with center O and dilatation factor r is the map $\delta_{r}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by

$$
\delta_{r}(X)=r X, \quad X \in \mathbb{R}^{2} .
$$

Proposition 1.8. Let $r, s \in \mathbb{R} \backslash\{0\}$ and $A \in \mathbb{R}^{2}$.
(1) The map δ_{r} is one-to-one and onto.
(2) $\delta_{r} \circ \delta_{s}=\delta_{r s}$.
(3) $\left(\delta_{r}\right)^{-1}=\delta_{1 / r}$.
(4) $\delta_{r} \circ \tau_{A}=\tau_{r A} \circ \delta_{r}$. In particular, $\tau_{r A}=\delta_{r} \circ \tau_{A} \circ\left(\delta_{r}\right)^{-1}$.

Definition 1.9. Let $\alpha: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a bijection,and $\mu: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ a map. The conjugate $\bar{\mu}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ of μ by α is defined by

$$
\bar{\mu}=\alpha \circ \mu \circ \alpha^{-1} .
$$

Thus, $\tau_{r A}$ is the conjugate of the translation τ_{A} by the central dilatation δ_{r}.

Definition 1.10. Let $C \in \mathbb{R}^{2}$ and $r \in \mathbb{R}$ with $r \neq 0$. The dilatation with center C and dilatation factor r is the map $\delta_{C, r}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by

$$
\delta_{C, r}(X)=C+r(X-C)=(1-r) C+r X, \quad X \in \mathbb{R}^{2} .
$$

Note that $\delta_{C, r}$ is a bijection (exercise) and $\delta_{O, r}=\delta_{r}$.
Proposition 1.11. Let $A, C \in \mathbb{R}^{2}$ and $r, s \in \mathbb{R} \backslash\{0\}$.
(1) $\delta_{C, r} \circ \delta_{C, s}=\delta_{C, r s}, \delta_{C, 1}=\mathrm{ID}$, and $\left(\delta_{C, r}\right)^{-1}=\delta_{C, 1 / r}$.
(2) The map $\delta_{A+C, r}$ is the conjugate of $\delta_{A, r}$ by τ_{C}. That is, $\delta_{A+C, r}=\tau_{C} \circ \delta_{A, r} \circ\left(\tau_{C}\right)^{-1}$.
(3) C is the fixed point of $\delta_{C, r}$, that is, $\delta_{C, r}(C)=C$. The point C is the only fixed point if and only if $r \neq 1$.
(4) $\delta_{C, r}$ maps a line to a parallel line.

References

[T] Philippe Tondeur, Vectors and Transformations in Plane Geometry, Publish Or Perish, Inc. 1993

Department of Mathematics, University of Illinois at Urbana-Champaign
E-mail address:daesungk@illinois.edu

