MATH 403 FALL 2021: HOMEWORK 10

INSTRUCTOR: DAESUNG KIM DUE DATE: DEC 6, 2021

- 1. Let α be an isometry and ℓ be a line. Show that $\sigma_{\alpha(\ell)} = \alpha \sigma_{\ell} \alpha^{-1}$.
- 2. Exercise 4.2
- 3. Exercise 4.5: Let α be an isometry. Suppose that $\alpha \sigma_{\ell} = \sigma_{\ell} \alpha$ holds for any line ℓ . Show that α is the identity map.
- 4. Exercise 4.7: Let ℓ_1, ℓ_2 be lines with $\ell_1 \perp \ell_2$. Show that $\sigma_{\ell_1} \sigma_{\ell_2} = \sigma_C$ for some $C \in \mathbb{R}^2$.
- 5. Exercise 4.9
- 6. Exercise 4.10
- 7. Exercise 4.11
- 8. Exercise 4.12
- 9. Exercise 4.13
- 10. Let α be a rotation with center $C \in \mathbb{R}^2$ through the oriented angle $\theta \in (-\pi, \pi]$ and ℓ be a line. Suppose α is not the identity map and $\alpha(\ell) = \ell$. Show that α is the central reflection in *C*.