# MATH 403 LECTURE NOTE <br> WEEK 9 

DAESUNG KIM

## 1. Orthocenters (Sec. 3.2)

Definition 1.1. The altitude $\ell_{C}$ of a triangle $\triangle A B C$ through $C$ is the line perpendicular to $\ell_{A B}$ through $C$. The intersection point $H_{C}$ between $\ell_{C}$ and $\ell_{A B}$ is called the foot of $\ell_{C}$.
Theorem 1.2. The altitudes of a triangle are concurrent. The point of concurrence is called the orthocenter.
There are three proofs.
First Proof. This proof relies on the following observation.
Lemma 1.3. For any points $X, A, B, C \in \mathbb{R}^{2}$, we have

$$
(X-A) \cdot(B-C)+(X-B) \cdot(C-A)+(X-C) \cdot(A-B)=0
$$

If $X \in \ell_{A} \cap \ell_{B}$, then

$$
(X-A) \cdot(B-C)=(X-B) \cdot(C-A)=0
$$

Thus, we have $(X-C) \cdot(A-B)=0$, which implies that $X \in \ell_{C}$.

Lemma 1.4. Let $\ell_{1}, \ell_{2}, \ell_{3}$ be lines. If $\ell_{1}$ is parallel to $\ell_{2}$ and perpendicular to $\ell_{3}$, then $\ell_{2}$ is perpendicular to $\ell_{3}$.
Lemma 1.5. Consider a triangle $\triangle A B C$. Let $A^{\prime}$ be the midpoint of $B$ and $C$. Let $\ell_{n}$ be the perpendicular bisector through $A^{\prime}$, and $\ell_{A}$ the altitude through $A$. Then, $\delta_{G,-2}$ maps $\ell_{n}$ to $\ell_{A}$, where $G$ is the centroid.
Second Proof. Since $\delta_{G,-2}$ maps each perpendicular bisector to the corresponding altitude and the perpendicular bisectors are concurrent, so are the altitudes. Note that it also maps the concurrence point, the circumcenter, to the concurrence point of the altitudes.

Third Proof. Consider the image of $\triangle A B C$ under $\delta_{G,-2}$. Then, the image is also a triangle $\triangle P Q R$ and $A, B, C$ are the midpoints of $P, Q, R$. Since the perpendicular bisectors of $\triangle P Q R$ coincide with the altitude of $\triangle A B C$, the proof is complete.

## References

[T] Philippe Tondeur, Vectors and Transformations in Plane Geometry, Publish Or Perish, Inc. 1993
Department of Mathematics, University of Illinois at Urbana-Champaign
E-mail address:daesungk@illinois.edu

