Math 403: Euclidean Geometry

Final Exam Solution, Fall 2021

Date: December 10, 2021

1. (14 points) Circle True or False. Do not justify your answer.
(a) True FALSE Let $X, Y \in \mathbb{R}^{2}$ with $|X|=4$ and $|Y|=2$, then $0 \leq X \cdot Y \leq 8$.

Solution: The Cauchy-Schwarz inequality says that $-|X||Y| \leq X \cdot Y \leq|X||Y|$. In fact, if $X=$ $(4,0)$ and $Y=(-2,0)$, then $X \cdot Y=-8$.
(b) True FALSE The composition of two central dilatations is a central dilatation.

Solution: Let $C, D \in \mathbb{R}^{2}$ with $C \neq D$, then

$$
\delta_{C, 1 / 2} \circ \delta_{D, 2}(X)=\delta_{C, 1 / 2}(-D+2 X)=\frac{1}{2}(C-D)+X
$$

is a translation, not a central dilatation.
(c) TRUE False Every involutive isometry has at least one fixed point.

Solution: Suppose an involutive isometry α has no fixed point. Then, $X \neq \alpha(X)$ for every X. Let M be the midpoint of X and $\alpha(X)$, then

$$
\alpha(M)=\alpha\left(\frac{1}{2}(X+\alpha(X))\right)=\frac{1}{2} \alpha(X)+\frac{1}{2} \alpha(\alpha(X))=M,
$$

which is a contradiction.
(d) True FALSE If X, Y, Z are non-collinear, then every point P can be uniquely written as $P=$ $a X+b Y+c Z$ with $a, b, c \geq 0$.

Solution: It holds for all $a, b, c \in \mathbb{R}$ with $a+b+c=1$.
(e) True FALSE If the lines ℓ and m are parallel, then the composition $\sigma_{\ell} \circ \sigma_{m}$ is a central reflection.

Solution: The composition is a translation.
(f) TRUE False If $|X+2 Y|^{2}=|X-2 Y|^{2}$, then X is perpendicular to Y.

Solution: Since

$$
|X+2 Y|^{2}=|X|^{2}+4 X \cdot Y+4|Y|^{2}=|X|^{2}-4 X \cdot Y+4|Y|^{2}=|X-2 Y|^{2},
$$

we have $X \cdot Y=0$.
(g) TRUE False If $A B C D$ form a rectangle, then there exists a circle \mathcal{S} such that $A, B, C, D \in \mathcal{S}$.

Solution: By Thales theorem, it is true.
2. (12 points) Give definitions of the following.
(a) Centroid

Solution: The centroid of a triangle is a unique point in the intersection of three medians. According to the proof of the previous theorem, the centroid can be written as

$$
G=\frac{1}{3}(A+B+C) .
$$

(b) Two lines are parallel

Solution: Let $A, B, C, D \in \mathbb{R}^{2}$ be distinct. Then the lines $\ell_{A B}$ and $\ell_{C D}$ are parallel if $D-C=$ $t(B-A)$ for some nonzero $t \in \mathbb{R}$.
(c) Involution

Solution: A map α is an involution if $\alpha \neq \operatorname{Id}$ and $\alpha^{2}=\operatorname{Id}$.
(d) A linear map

Solution: A map L is linear if $L(X+Y)=L(X)+L(Y)$ and $L(r X)=r L(X)$ for all $X, Y \in \mathbb{R}^{2}$ and $r \in \mathbb{R}$.
(e) Orthocenter of a triangle

Solution: The altitudes of a triangle are concurrent. The point of concurrence is called the orthocenter.
(f) Scalar product

Solution: Let $X=\left(x_{1}, x_{2}\right)$ and $Y=\left(y_{1}, y_{2}\right)$. The scalar product of X and Y is defined by

$$
X \cdot Y=x_{1} y_{1}+x_{2} y_{2}
$$

3. (10 points) Write down the statement of one of the following theorems:
(i) Ceva's theorem,
(ii) Menelaus's theorem,
(iii) Nine points circle theorem.

Solution:

(i) Ceva's theorem: Let $A, B, C \in \mathbb{R}^{2}$ form a triangle. Let $A^{\prime}, B^{\prime}, C^{\prime}$ be points on the sides $\overline{B C}, \overline{C A}, \overline{A B}$ respectively. Assume that A^{\prime} is distinct from B, C, B^{\prime} from C, A, and C^{\prime} from A, B. Then, $\ell_{A A^{\prime}}, \ell_{B B^{\prime}}, \ell_{C C^{\prime}}$ are concurrent if and only if

$$
\frac{A^{\prime}-B}{A^{\prime}-C} \cdot \frac{B^{\prime}-C}{B^{\prime}-A} \cdot \frac{C^{\prime}-A}{C^{\prime}-B}=-1
$$

(ii) Menelaus's theorem: Let A, B, C form a triangle. Let $A^{\prime} \in \ell_{B C}, B^{\prime} \in \ell_{C A}, C^{\prime} \in \ell_{A B}$ be distinct from A, B, C. Then, $A^{\prime}, B^{\prime}, C^{\prime}$ are collinear if and only if

$$
\frac{A^{\prime}-B}{A^{\prime}-C} \cdot \frac{B^{\prime}-C}{B^{\prime}-A} \cdot \frac{C^{\prime}-A}{C^{\prime}-B}=1
$$

(iii) Nine points circle theorem: Consider a triangle $\triangle A B C$. Let $A^{\prime}, B^{\prime}, C^{\prime}$ be the midpoints of A, B, C, H the orthocenter, and

$$
A^{\prime \prime}=\frac{1}{2}(A+H), \quad B^{\prime \prime}=\frac{1}{2}(B+H), \quad C^{\prime \prime}=\frac{1}{2}(C+H) .
$$

Let D, E, F be the feet of the altitudes $\ell_{A}, \ell_{B}, \ell_{C}$. Then, there exists a circle \mathcal{S} that contains the nine points, $A^{\prime}, B^{\prime}, C^{\prime}, A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}, D, E, F$.
4. (a) (5 points) Find an isometry α such that $\alpha \neq \operatorname{Id}, \alpha(1,0)=(1,0)$, and $\alpha(-1,0)=(-1,0)$.
(b) (5 points) Is your example an involution? Justify your answer.

Solution:

(a) Since α has two distinct fixed points, it is either a reflection in the line passing through $(1,0)$ and $(-1,0)$, or the identity. Since it is not the identity and the line is x-axis, α should be $\alpha(x, y)=$ $(x,-y)$.
(b) Since $\alpha^{2}(x, y)=\alpha(x,-y)=(x, y)$ and it is not the identity, it is an involution.
5. Let $\alpha: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by $\alpha(x, y)=\frac{1}{\sqrt{2}}(x-y, x+y)$ for $x, y \in \mathbb{R}$.
(a) (6 points) Is α an isometry? Justify your answer.
(b) (6 points) Is α linear? Justify your answer.

Solution:

(a) Yes. For $X=(x, y)$ and $Z=(z, w)$, we have

$$
\begin{aligned}
|\alpha(X)-\alpha(Z)|^{2} & =\frac{1}{2}|((x-z)-(y-w),(x-z)+(y-w))|^{2} \\
& =\frac{1}{2}\left(2(x-z)^{2}+2(y-w)^{2}\right) \\
& =|X-Z|^{2} .
\end{aligned}
$$

(b) Yes. Since α is an isometry with $\alpha(0,0)=(0,0)$, it is linear.
6. (10 points) Let α be an isometry and $X \in \mathbb{R}^{2}$ be such that $X \neq \alpha(X)$. Let ℓ be the perpendicular bisector of X and $\alpha(X)$. Show that every fixed point of α lies on the line ℓ.

Solution: Let P be a fixed point. Then,

$$
|X-P|=|\alpha(X)-\alpha(P)|=|\alpha(X)-P|,
$$

which implies that P is on the perpendicular bisector.
7. (10 points) Let $X, Y, Z \in \mathbb{R}^{2}, a, b, c \in \mathbb{R}, a+b+c=1$, and α be an isometry. Show that

$$
\alpha(a X+b Y+c Z)=a \alpha(X)+b \alpha(Y)+c \alpha(Z)
$$

(Hint: You may use the fact that every isometry can be written as the composition of a translation and a linear isometry.)

Solution: We already know that $\alpha=\tau_{R} \circ L$ where $R \in \mathbb{R}^{2}$ and L is a linear isometry. Then,

$$
\begin{aligned}
\alpha(a X+b Y+c Z) & =\tau_{R} \circ L(a X+b Y+c Z) \\
& =\tau_{R}(a L(X)+b L(Y)+c L(Z)) \\
& =R+a L(X)+b L(Y)+c L(Z) \\
& =a R+b R+c R+a L(X)+b L(Y)+c L(Z) \\
& =a(R+L(X))+b(R+L(Y))+c(R+L(Z)) \\
& =a \alpha(X)+b \alpha(Y)+c \alpha(Z) .
\end{aligned}
$$

8. (a) (6 points) Let $P \in \mathbb{R}^{2}$ and $r \in \mathbb{R}$ with $r \neq 0$. Show that the central dilatation $\delta_{P, r}$ preserves the centroid of three points. (That is, if G is the centroid of A, B, C, then $\delta_{P, r}(G)$ is the centroid of $\left.\delta_{P, r}(A), \delta_{P, r}(B), \delta_{P, r}(C).\right)$
(b) (6 points) Let α be an isometry. Does α preserve the centroid of three points? Justify your answer.

Solution:

(a) If follows that

$$
\begin{aligned}
\delta_{P, r}(G) & =(1-r) P+r G \\
& =(1-r)\left(\frac{1}{3} P+\frac{1}{3} P+\frac{1}{3} P\right)+r\left(\frac{1}{3} A+\frac{1}{3} B+\frac{1}{3} C\right) \\
& =\frac{1}{3}((1-r) P+r A)+\frac{1}{3}((1-r) P+r B)+\frac{1}{3}((1-r) P+r C) \\
& =\frac{1}{3} \delta_{P, r}(A)+\frac{1}{3} \delta_{P, r}(B)+\frac{1}{3} \delta_{P, r}(C) .
\end{aligned}
$$

(b) Yes. By Problem 7, we have

$$
\begin{aligned}
\alpha(G) & =\alpha\left(\frac{1}{3} A+\frac{1}{3} B+\frac{1}{3} C\right) \\
& =\frac{1}{3} \alpha(A)+\frac{1}{3} \alpha(B)+\frac{1}{3} \alpha(C) .
\end{aligned}
$$

9. (10 points) Show that two distinct parallel lines do not intersect.
(Hint: Prove it by contradiction: suppose there exists a point P on the intersection of two lines.)

Solution: Suppose ℓ and m are two distinct parallel lines. Assume that there exists $P \in \ell \cap m$. Since these two lines are distinct, there exist $A, B \in \mathbb{R}^{2}$ such that $A \in \ell, A \notin m, B \notin \ell$, and $B \in m$. Since the lines are parallel, there exists $t \in \mathbb{R} \backslash\{0\}$ such that $A-P=t(B-P)$. Thus, $A=(1-t) P+t B \in m$, which is a contradiction.

