MATH 403 LECTURE NOTE WEEK 12

DAESUNG KIM

1. DEFINITION OF ISOMETRIES (SEC. 4.1)

Definition 1.1. An isometry is a distance preserving map. That is, a map $\alpha : \mathbb{R}^2 \to \mathbb{R}^2$ is an isometry if and only if

$$d(\alpha(X), \alpha(Y)) = d(X, Y)$$
 for all X, Y .

Example 1.2. Translations are isometries. Indeed, let $\alpha = \tau_A$ for $A \in \mathbb{R}^2$, then

$$|\alpha(X) - \alpha(Y)| = |(X + A) - (Y + A)| = |X - Y|$$

for all X, Y.

Example 1.3. Central dilatations may not be isometries. Indeed, let $\alpha = \delta_{A,r}$ for $A \in \mathbb{R}^2$ and $r \in \mathbb{R} \setminus \{0\}$, then

$$|\alpha(X) - \alpha(Y)| = |(rX + (1 - r)A) - (rY + (1 - r)A)| = |r||X - Y|.$$

Thus, α is an isometry if and only if |r| = 1. If r = 1, then α is the identity. If r = -1, then α is the central reflection.

Example 1.4. Let $\alpha : \mathbb{R}^2 \to \mathbb{R}^2$. The following are isometries.

(1) $\alpha(x_1, x_2) = (x_2, x_1)$ (2) $\alpha(x_1, x_2) = (-x_2, x_1)$ (3) $\alpha(x_1, x_2) = (-x_1, x_2)$ (4) $\alpha(x_1, x_2) = (x_1, -x_2)$

2. LINEAR ISOMETRIES (SEC. 4.1)

Definition 2.1. A map $\alpha : \mathbb{R}^2 \to \mathbb{R}^2$ is called a linear map if

(1) $\alpha(X+Y) = \alpha(X) + \alpha(Y)$, and (2) $\alpha(rX) = r\alpha(X)$,

for all $X, Y \in \mathbb{R}^2$ and $r \in \mathbb{R}$.

Example 2.2. The map $\alpha(X) = 2X$ is a linear map. In general, let

$$\alpha(x_1, x_2) = XM = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \begin{pmatrix} a & c \\ b & d \end{pmatrix} = (ax_1 + bx_2, cx_1 + dx_2).$$

Then, one can see this is a linear map. In general, this map is not an isometry. Under what condition on the matrix M, is it an isometry? (Exercise)

Example 2.3. The map $\alpha(x_1, x_2) = (x_1 + 1, x_2 + 3)$ is not a linear map. In fact, if $\alpha = \tau_A$ where $A \neq O$, then α is not linear.

Remark 2.4. Note that if α is linear, then $\alpha(O) = O$. Also, it maps a line to a line. Indeed, if ℓ_{AB} is a line, then $X \in \ell_{AB}$ can be written as X = (1 - t)A + tB. Then,

$$\alpha(X) = (1-t)\alpha(A) + t\alpha(B),$$

which implies $\alpha(X) \in \ell_{\alpha(A)\alpha(B)}$.

Theorem 2.5. If α is an isometry with $\alpha(O) = O$, then it is linear. In fact, every isometry can be written as $\alpha = L \circ \tau$ where *L* is linear and τ is a translation.

Proof. Note that $|\alpha(X)| = |\alpha(X) - \alpha(O)| = |X - O| = |X|$ for all X. Then,

$$= |\alpha(X) - \alpha(Y)|^2 - |X - Y|^2 = 2(X \cdot Y - \alpha(X) \cdot \alpha(Y)).$$

Thus,

$$\begin{split} &|\alpha(X+Y) - \alpha(X) - \alpha(Y)|^2 \\ &= |\alpha(X+Y)|^2 + |\alpha(X)|^2 + |\alpha(Y)|^2 - 2(\alpha(X+Y) \cdot \alpha(X) - \alpha(X) \cdot \alpha(Y) + \alpha(X+Y) \cdot \alpha(Y)) \\ &= |X+Y|^2 + |X|^2 + |Y|^2 - 2((X+Y) \cdot X - X \cdot Y + (X+Y) \cdot Y) \\ &= 2|X|^2 + 2|Y|^2 + 2X \cdot Y - 2(|X|^2 + X \cdot Y + |Y|^2) \\ &= 0, \end{split}$$

which implies $\alpha(X + Y) = \alpha(X) + \alpha(Y)$. For $r \in \mathbb{R}$ and $X \in \mathbb{R}^2$, we have

$$\begin{aligned} |\alpha(rX) - r\alpha(X)|^2 &= |\alpha(rX)|^2 - 2r\alpha(rX) \cdot \alpha(X) + r^2 |\alpha(X)|^2 \\ &= |rX|^2 - 2r(rX) \cdot X + r^2 |X|^2 \\ &= 0. \end{aligned}$$

Thus, α is linear.

3. GROUP OF ISOMETRIES (SEC. 4.1)

Theorem 3.1. *The set of all isometries is a group. In fact, we have the following.*

- (1) The composition of two isometries is an isometry.
- (2) Every isometry is a bijection.
- (3) The inverse of an isometry is an isometry.

0

Proof. Let α , β be isometries.

(1) It follows from

$$|\alpha(\beta(X)) - \alpha(\beta(Y))| = |\beta(X) - \beta(Y)| = |X - Y|.$$

(2) Suppose $\alpha(X) = \alpha(Y)$. Then, $|\alpha(X) - \alpha(Y)| = |X - Y| = 0$ implies X = Y. Thus, α is one-to-one. Let $E_1 = (1,0)$ and $E_2 = (0,1)$. Let $\beta = \tau_{\alpha(O)} \circ \alpha$, then it suffices to show that β is onto. We cliam that $O, \beta(E_1), \beta(E_2)$ are not collinear. Indeed, if there exists r such that $\beta(E_1) = r\beta(E_2)$, then $\beta(E_1) = \beta(rE_2)$. Since β is one-to-one, $E_1 = rE_2$, which is a contradiction. Thus, any vector $Y \in \mathbb{R}^2$ can be written as $Y = a\beta(E_1) + b\beta(E_2)$. Since β is linear,

$$Y = a\beta(E_1) + b\beta(E_2) = \beta(aE_1 + bE_2).$$

Thus, β is onto and so is α .

(3) For any X, Y, we have

$$|\alpha^{-1}(X) - \alpha^{-1}(Y)| = |\alpha \circ \alpha^{-1}(X) - \alpha \circ \alpha^{-1}(Y)| = |X - Y|.$$

Proposition 3.2. Let ℓ_{AB} , ℓ_{CD} be lines in \mathbb{R}^2 with $A \neq B$, $C \neq D$ and α an isometry.

- (1) Every isometry maps a line to a line. Indeed, $\alpha(\ell_{AB}) = \ell_{\alpha(A)\alpha(B)}$.
- (2) Every isometry maps two parallel lines to two parallel lines in a sense that if $\ell_{AB} \parallel \ell_{CD}$ then $\ell_{\alpha(A)\alpha(B)} \parallel \ell_{\alpha(C)\alpha(D)}$.
- (3) Every isometry maps two perpendicular lines to two perpendicular lines in a sense that if $\ell_{AB} \perp \ell_{CD}$ then $\ell_{\alpha(A)\alpha(B)} \perp \ell_{\alpha(C)\alpha(D)}$.

Proof. Let $\alpha = L \circ \tau_R$ where *L* is linear and τ_R is a translation.

- (1) Since a linear map and a translation map a line to a line and eveery isometry is the composition of a linear map and a translation, the proof is complete.
- (2) Let (A B) = r(C D). It then follows from

$$\alpha(A) - \alpha(B) = L(A + R) - L(B + R) = L(A - B) = rL(C - D) = r(\alpha(C) - \alpha(D)).$$

(3) Let $(A - B) \cdot (C - D) = 0$. Since every linear isometry preserves the scalar product, we have

$$(\alpha(A) - \alpha(B)) \cdot (\alpha(C) - \alpha(D)) = (L(A) - L(B)) \cdot (L(C) - L(D))$$
$$= L((A - B)) \cdot L((C - D))$$
$$= (A - B) \cdot (C - D)$$
$$= 0.$$

4. FIXED POINTS OF ISOMETRIES (SEC. 4.2)

Definition 4.1. Let α be a bijection. We say X is a fixed point of α if $\alpha(X) = X$.

Proposition 4.2. Let α be an isometry and X, Y be distinct fixed points of α . Then, every point P on ℓ_{XY} is a fixed point of α .

Proof. Since $\alpha = L \circ \tau_R$ where *L* is a linear isometry and τ_R is a translation, for every point $P = (1 - t)X + tY \in \ell_{XY}$, we have

$$\begin{split} \alpha(P) &= L((1-t)X + tY + R) \\ &= L((1-t)(X+R) + t(Y+R)) \\ &= (1-t)L(X+R) + tL(Y+R) \\ &= (1-t)\alpha(X) + t\alpha(Y) \\ &= (1-t)X + tY \\ &= P. \end{split}$$

Proposition 4.3. Let α be an isometry and X, Y, Z be distinct, non-collinear, and fixed points of α . Then, $\alpha = \text{Id.}$

Proof. By assumption, ℓ_{XY} , ℓ_{YZ} , ℓ_{ZX} are distinct. Let $P \in \mathbb{R}^2$. We claim that $\alpha(P) = P$. If $P \in \ell_{XY} \cup \ell_{YZ} \cup \ell_{ZX}$, then $\alpha(P) = P$ by the previous proposition. Suppose P is not on these lines. Consider ℓ_{PX} . If ℓ_{PX} is not parallel to ℓ_{YZ} , then there exists $M \in \ell_{PX} \cap \ell_{YZ}$. Since $M \in \ell_{YZ}$, M is a fixed point. Since $M, X \in \ell_{PX}$ are fixed points, P is also a fixed point. If $\ell_{PX} \# \ell_{YZ}$, then ℓ_{PY} intersects with ℓ_{ZX} . By the same argument, we conclude that P is a fixed point. Thus, α is the identity map.

REFERENCES

[T] Philippe Tondeur, Vectors and Transformations in Plane Geometry, Publish Or Perish, Inc. 1993

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN *E-mail address*:daesungk@illinois.edu