MATH 403 LECTURE NOTE
 WEEK 12

DAESUNG KIM

1. Definition of Isometries (Sec. 4.1)

Definition 1.1. An isometry is a distance preserving map. That is, a map $\alpha: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is an isometry if and only if

$$
d(\alpha(X), \alpha(Y))=d(X, Y) \quad \text { for all } X, Y
$$

Example 1.2. Translations are isometries. Indeed, let $\alpha=\tau_{A}$ for $A \in \mathbb{R}^{2}$, then

$$
|\alpha(X)-\alpha(Y)|=|(X+A)-(Y+A)|=|X-Y|
$$

for all X, Y.
Example 1.3. Central dilatations may not be isometries. Indeed, let $\alpha=\delta_{A, r}$ for $A \in \mathbb{R}^{2}$ and $r \in \mathbb{R} \backslash\{0\}$, then

$$
|\alpha(X)-\alpha(Y)|=|(r X+(1-r) A)-(r Y+(1-r) A)|=|r||X-Y|
$$

Thus, α is an isometry if and only if $|r|=1$. If $r=1$, then α is the identity. If $r=-1$, then α is the central reflection.
Example 1.4. Let $\alpha: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. The following are isometries.
(1) $\alpha\left(x_{1}, x_{2}\right)=\left(x_{2}, x_{1}\right)$
(2) $\alpha\left(x_{1}, x_{2}\right)=\left(-x_{2}, x_{1}\right)$
(3) $\alpha\left(x_{1}, x_{2}\right)=\left(-x_{1}, x_{2}\right)$
(4) $\alpha\left(x_{1}, x_{2}\right)=\left(x_{1},-x_{2}\right)$

2. Linear Isometries (Sec. 4.1)

Definition 2.1. A map $\alpha: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is called a linear map if
(1) $\alpha(X+Y)=\alpha(X)+\alpha(Y)$, and
(2) $\alpha(r X)=r \alpha(X)$,
for all $X, Y \in \mathbb{R}^{2}$ and $r \in \mathbb{R}$.
Example 2.2. The map $\alpha(X)=2 X$ is a linear map. In general, let

$$
\alpha\left(x_{1}, x_{2}\right)=X M=\binom{x_{1}}{x_{2}}\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)=\left(a x_{1}+b x_{2}, c x_{1}+d x_{2}\right) .
$$

Then, one can see this is a linear map. In general, this map is not an isometry. Under what condition on the matrix M, is it an isometry? (Exercise)

Example 2.3. The map $\alpha\left(x_{1}, x_{2}\right)=\left(x_{1}+1, x_{2}+3\right)$ is not a linear map. In fact, if $\alpha=\tau_{A}$ where $A \neq O$, then α is not linear.

Remark 2.4. Note that if α is linear, then $\alpha(O)=O$. Also, it maps a line to a line. Indeed, if $\ell_{A B}$ is a line, then $X \in \ell_{A B}$ can be written as $X=(1-t) A+t B$. Then,

$$
\alpha(X)=(1-t) \alpha(A)+t \alpha(B)
$$

which implies $\alpha(X) \in \ell_{\alpha(A) \alpha(B)}$.
Theorem 2.5. If α is an isometry with $\alpha(O)=O$, then it is linear. In fact, every isometry can be written as $\alpha=L \circ \tau$ where L is linear and τ is a translation.

Proof. Note that $|\alpha(X)|=|\alpha(X)-\alpha(O)|=|X-O|=|X|$ for all X. Then,

$$
0=|\alpha(X)-\alpha(Y)|^{2}-|X-Y|^{2}=2(X \cdot Y-\alpha(X) \cdot \alpha(Y))
$$

Thus,

$$
\begin{aligned}
& |\alpha(X+Y)-\alpha(X)-\alpha(Y)|^{2} \\
& =|\alpha(X+Y)|^{2}+|\alpha(X)|^{2}+|\alpha(Y)|^{2}-2(\alpha(X+Y) \cdot \alpha(X)-\alpha(X) \cdot \alpha(Y)+\alpha(X+Y) \cdot \alpha(Y)) \\
& =|X+Y|^{2}+|X|^{2}+|Y|^{2}-2((X+Y) \cdot X-X \cdot Y+(X+Y) \cdot Y) \\
& =2|X|^{2}+2|Y|^{2}+2 X \cdot Y-2\left(|X|^{2}+X \cdot Y+|Y|^{2}\right) \\
& =0
\end{aligned}
$$

which implies $\alpha(X+Y)=\alpha(X)+\alpha(Y)$. For $r \in \mathbb{R}$ and $X \in \mathbb{R}^{2}$, we have

$$
\begin{aligned}
|\alpha(r X)-r \alpha(X)|^{2} & =|\alpha(r X)|^{2}-2 r \alpha(r X) \cdot \alpha(X)+r^{2}|\alpha(X)|^{2} \\
& =|r X|^{2}-2 r(r X) \cdot X+r^{2}|X|^{2} \\
& =0
\end{aligned}
$$

Thus, α is linear.

3. Group of Isometries (Sec. 4.1)

Theorem 3.1. The set of all isometries is a group. In fact, we have the following.
(1) The composition of two isometries is an isometry.
(2) Every isometry is a bijection.
(3) The inverse of an isometry is an isometry.

Proof. Let α, β be isometries.
(1) It follows from

$$
|\alpha(\beta(X))-\alpha(\beta(Y))|=|\beta(X)-\beta(Y)|=|X-Y|
$$

(2) Suppose $\alpha(X)=\alpha(Y)$. Then, $|\alpha(X)-\alpha(Y)|=|X-Y|=0$ implies $X=Y$. Thus, α is one-to-one.

Let $E_{1}=(1,0)$ and $E_{2}=(0,1)$. Let $\beta=\tau_{\alpha(O)} \circ \alpha$, then it suffices to show that β is onto. We cliam that $O, \beta\left(E_{1}\right), \beta\left(E_{2}\right)$ are not collinear. Indeed, if there exists r such that $\beta\left(E_{1}\right)=r \beta\left(E_{2}\right)$, then $\beta\left(E_{1}\right)=\beta\left(r E_{2}\right)$. Since β is one-to-one, $E_{1}=r E_{2}$, which is a contradiction. Thus, any vector $Y \in \mathbb{R}^{2}$ can be written as $Y=a \beta\left(E_{1}\right)+b \beta\left(E_{2}\right)$. Since β is linear,

$$
Y=a \beta\left(E_{1}\right)+b \beta\left(E_{2}\right)=\beta\left(a E_{1}+b E_{2}\right)
$$

Thus, β is onto and so is α.
(3) For any X, Y, we have

$$
\left|\alpha^{-1}(X)-\alpha^{-1}(Y)\right|=\left|\alpha \circ \alpha^{-1}(X)-\alpha \circ \alpha^{-1}(Y)\right|=|X-Y|
$$

Proposition 3.2. Let $\ell_{A B}, \ell_{C D}$ be lines in \mathbb{R}^{2} with $A \neq B, C \neq D$ and α an isometry.
(1) Every isometry maps a line to a line. Indeed, $\alpha\left(\ell_{A B}\right)=\ell_{\alpha(A) \alpha(B)}$.
(2) Every isometry maps two parallel lines to two parallel lines in a sense that if $\ell_{A B} / / \ell_{C D}$ then $\ell_{\alpha(A) \alpha(B)} / /$ $\ell_{\alpha(C) \alpha(D)}$.
(3) Every isometry maps two perpendicular lines to two perpendicular lines in a sense that if $\ell_{A B} \perp \ell_{C D}$ then $\ell_{\alpha(A) \alpha(B)} \perp \ell_{\alpha(C) \alpha(D)}$.

Proof. Let $\alpha=L \circ \tau_{R}$ where L is linear and τ_{R} is a translation.
(1) Since a linear map and a translation map a line to a line and eveery isometry is the composition of a linear map and a translation, the proof is complete.
(2) Let $(A-B)=r(C-D)$. It then follows from

$$
\alpha(A)-\alpha(B)=L(A+R)-L(B+R)=L(A-B)=r L(C-D)=r(\alpha(C)-\alpha(D))
$$

(3) Let $(A-B) \cdot(C-D)=0$. Since every linear isometry preserves the scalar product, we have

$$
\begin{aligned}
(\alpha(A)-\alpha(B)) \cdot(\alpha(C)-\alpha(D)) & =(L(A)-L(B)) \cdot(L(C)-L(D)) \\
& =L((A-B)) \cdot L((C-D)) \\
& =(A-B) \cdot(C-D) \\
& =0
\end{aligned}
$$

4. FIXED POINTS OF ISOMETRIES (SEC. 4.2)

Definition 4.1. Let α be a bijection. We say X is a fixed point of α if $\alpha(X)=X$.
Proposition 4.2. Let α be an isometry and X, Y be distinct fixed points of α. Then, every point P on $\ell_{X Y}$ is a fixed point of α.

Proof. Since $\alpha=L \circ \tau_{R}$ where L is a linear isometry and τ_{R} is a translation, for every point $P=(1-t) X+$ $t Y \in \ell_{X Y}$, we have

$$
\begin{aligned}
\alpha(P) & =L((1-t) X+t Y+R) \\
& =L((1-t)(X+R)+t(Y+R)) \\
& =(1-t) L(X+R)+t L(Y+R) \\
& =(1-t) \alpha(X)+t \alpha(Y) \\
& =(1-t) X+t Y \\
& =P
\end{aligned}
$$

Proposition 4.3. Let α be an isometry and X, Y, Z be distinct, non-collinear, and fixed points of α. Then, $\alpha=\operatorname{Id}$.
Proof. By assumption, $\ell_{X Y}, \ell_{Y Z}, \ell_{Z X}$ are distinct. Let $P \in \mathbb{R}^{2}$. We claim that $\alpha(P)=P$. If $P \in \ell_{X Y} \cup \ell_{Y Z} \cup$ $\ell_{Z X}$, then $\alpha(P)=P$ by the previous proposition. Suppose P is not on these lines. Consider $\ell_{P X}$. If $\ell_{P X}$ is not parallel to $\ell_{Y Z}$, then there exists $M \in \ell_{P X} \cap \ell_{Y Z}$. Since $M \in \ell_{Y Z}, M$ is a fixed point. Since $M, X \in \ell_{P X}$ are fixed points, P is also a fixed point. If $\ell_{P X} / / \ell_{Y Z}$, then $\ell_{P Y}$ intersects with $\ell_{Z X}$. By the same argument, we conclude that P is a fixed point. Thus, α is the identity map.

REFERENCES

[T] Philippe Tondeur, Vectors and Transformations in Plane Geometry, Publish Or Perish, Inc. 1993
Department of Mathematics, University of Illinois at Urbana-Champaign
E-mail address:daesungk@illinois.edu

