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1. DEFINITION OF ISOMETRIES (SEC. 4.1)

Definition 1.1. An isometry is a distance preserving map. That is, a map α : R2 → R2 is an isometry if and only if

d(α(X), α(Y )) = d(X,Y ) for all X,Y.

Example 1.2. Translations are isometries. Indeed, let α = τA for A ∈ R2, then

|α(X)− α(Y )| = |(X +A)− (Y +A)| = |X − Y |

for all X,Y .

Example 1.3. Central dilatations may not be isometries. Indeed, let α = δA,r for A ∈ R2 and r ∈ R \ {0}, then

|α(X)− α(Y )| = |(rX + (1− r)A)− (rY + (1− r)A)| = |r||X − Y |.

Thus, α is an isometry if and only if |r| = 1. If r = 1, then α is the identity. If r = −1, then α is the central reflection.

Example 1.4. Let α : R2 → R2. The following are isometries.
(1) α(x1, x2) = (x2, x1)
(2) α(x1, x2) = (−x2, x1)
(3) α(x1, x2) = (−x1, x2)
(4) α(x1, x2) = (x1,−x2)

2. LINEAR ISOMETRIES (SEC. 4.1)

Definition 2.1. A map α : R2 → R2 is called a linear map if
(1) α(X + Y ) = α(X) + α(Y ), and
(2) α(rX) = rα(X),

for all X,Y ∈ R2 and r ∈ R.

Example 2.2. The map α(X) = 2X is a linear map. In general, let

α(x1, x2) = XM =

(
x1
x2

)(
a c
b d

)
= (ax1 + bx2, cx1 + dx2).

Then, one can see this is a linear map. In general, this map is not an isometry. Under what condition on the matrix
M , is it an isometry? (Exercise)

Example 2.3. The map α(x1, x2) = (x1 + 1, x2 + 3) is not a linear map. In fact, if α = τA where A 6= O, then α is
not linear.

Remark 2.4. Note that if α is linear, then α(O) = O. Also, it maps a line to a line. Indeed, if `AB is a line, then
X ∈ `AB can be written as X = (1− t)A+ tB. Then,

α(X) = (1− t)α(A) + tα(B),

which implies α(X) ∈ `α(A)α(B).

Theorem 2.5. If α is an isometry with α(O) = O, then it is linear. In fact, every isometry can be written as α = L◦τ
where L is linear and τ is a translation.
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Proof. Note that |α(X)| = |α(X)− α(O)| = |X −O| = |X| for all X . Then,

0 = |α(X)− α(Y )|2 − |X − Y |2 = 2(X · Y − α(X) · α(Y )).

Thus,

|α(X + Y )− α(X)− α(Y )|2

= |α(X + Y )|2 + |α(X)|2 + |α(Y )|2 − 2(α(X + Y ) · α(X)− α(X) · α(Y ) + α(X + Y ) · α(Y ))

= |X + Y |2 + |X|2 + |Y |2 − 2((X + Y ) ·X −X · Y + (X + Y ) · Y )

= 2|X|2 + 2|Y |2 + 2X · Y − 2(|X|2 +X · Y + |Y |2)
= 0,

which implies α(X + Y ) = α(X) + α(Y ). For r ∈ R and X ∈ R2, we have

|α(rX)− rα(X)|2 = |α(rX)|2 − 2rα(rX) · α(X) + r2|α(X)|2

= |rX|2 − 2r(rX) ·X + r2|X|2

= 0.

Thus, α is linear. �

3. GROUP OF ISOMETRIES (SEC. 4.1)

Theorem 3.1. The set of all isometries is a group. In fact, we have the following.
(1) The composition of two isometries is an isometry.
(2) Every isometry is a bijection.
(3) The inverse of an isometry is an isometry.

Proof. Let α, β be isometries.
(1) It follows from

|α(β(X))− α(β(Y ))| = |β(X)− β(Y )| = |X − Y |.

(2) Suppose α(X) = α(Y ). Then, |α(X)− α(Y )| = |X − Y | = 0 implies X = Y . Thus, α is one-to-one.
Let E1 = (1, 0) and E2 = (0, 1). Let β = τα(O) ◦ α, then it suffices to show that β is onto. We

cliam that O, β(E1), β(E2) are not collinear. Indeed, if there exists r such that β(E1) = rβ(E2), then
β(E1) = β(rE2). Since β is one-to-one, E1 = rE2, which is a contradiction. Thus, any vector Y ∈ R2

can be written as Y = aβ(E1) + bβ(E2). Since β is linear,

Y = aβ(E1) + bβ(E2) = β(aE1 + bE2).

Thus, β is onto and so is α.
(3) For any X,Y , we have

|α−1(X)− α−1(Y )| = |α ◦ α−1(X)− α ◦ α−1(Y )| = |X − Y |.

�

Proposition 3.2. Let `AB , `CD be lines in R2 with A 6= B, C 6= D and α an isometry.
(1) Every isometry maps a line to a line. Indeed, α(`AB) = `α(A)α(B).
(2) Every isometry maps two parallel lines to two parallel lines in a sense that if `AB // `CD then `α(A)α(B)

//

`α(C)α(D).
(3) Every isometry maps two perpendicular lines to two perpendicular lines in a sense that if `AB ⊥ `CD then

`α(A)α(B) ⊥ `α(C)α(D).

Proof. Let α = L ◦ τR where L is linear and τR is a translation.
(1) Since a linear map and a translation map a line to a line and eveery isometry is the composition of

a linear map and a translation, the proof is complete.
(2) Let (A−B) = r(C −D). It then follows from

α(A)− α(B) = L(A+R)− L(B +R) = L(A−B) = rL(C −D) = r(α(C)− α(D)).
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(3) Let (A−B) · (C −D) = 0. Since every linear isometry preserves the scalar product, we have

(α(A)− α(B)) · (α(C)− α(D)) = (L(A)− L(B)) · (L(C)− L(D))

= L((A−B)) · L((C −D))

= (A−B) · (C −D)

= 0.

�

4. FIXED POINTS OF ISOMETRIES (SEC. 4.2)

Definition 4.1. Let α be a bijection. We say X is a fixed point of α if α(X) = X .

Proposition 4.2. Let α be an isometry and X,Y be distinct fixed points of α. Then, every point P on `XY is a fixed
point of α.

Proof. Since α = L ◦ τR where L is a linear isometry and τR is a translation, for every point P = (1− t)X +
tY ∈ `XY , we have

α(P ) = L((1− t)X + tY +R)

= L((1− t)(X +R) + t(Y +R))

= (1− t)L(X +R) + tL(Y +R)

= (1− t)α(X) + tα(Y )

= (1− t)X + tY

= P.

�

Proposition 4.3. Let α be an isometry and X,Y, Z be distinct, non-collinear, and fixed points of α. Then, α = Id.

Proof. By assumption, `XY , `Y Z , `ZX are distinct. Let P ∈ R2. We claim that α(P ) = P . If P ∈ `XY ∪ `Y Z ∪
`ZX , then α(P ) = P by the previous proposition. Suppose P is not on these lines. Consider `PX . If `PX is
not parallel to `Y Z , then there exists M ∈ `PX ∩ `Y Z . Since M ∈ `Y Z , M is a fixed point. Since M,X ∈ `PX
are fixed points, P is also a fixed point. If `PX // `Y Z , then `PY intersects with `ZX . By the same argument,
we conclude that P is a fixed point. Thus, α is the identity map. �
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