MATH 403 FALL 2021: HOMEWORK 6 SOLUTION

INSTRUCTOR: DAESUNG KIM
DUE DATE: OCT 15, 2021

1. Exercise 2.15

Solution: Suppose $e x=x e=x=e^{\prime} x=x e^{\prime}$ for all $x \in G$. Then,

$$
e^{\prime}=e e^{\prime}=e
$$

2. Exercise 2.16

Solution: Let $x \in G$ and assume that y, z satisfy $x y=y x=e=x z=z x=e$. Then,

$$
y=y e=y(x z)=y x z=(y x) z=e z=z
$$

3. Exercise 2.17

Solution: Let $x, y \in G$. Since $x x^{-1}=x^{-1} x=e$, it follows from the uniqueness of the inverse that x is the inverse of x^{-1}, that is $x=\left(x^{-1}\right)^{-1}$. Also,

$$
\begin{aligned}
& (x y)\left(y^{-1} x^{-1}\right)=x\left(y y^{-1}\right) x^{-1}=(x e) x^{-1}=x x^{-1}=e \\
& \left(y^{-1} x^{-1}\right)(x y)=y^{-1}\left(x^{-1} x\right) y=\left(y^{-1} e\right) y=y^{-1} y=e
\end{aligned}
$$

implies that $y^{-1} x^{-1}$ is the inverse of $x y$.
4. Exercise 2.20

Solution: Since H is a subgroup, it contains the identity $e=x^{0}$. We claim that $x^{m} \in H$ for all $m \in \mathbb{N}$. By the assumption $x=x^{1} \in H$. Suppose $x^{n} \in H$, then $x^{n+1}=x x^{n} \in H$ since the operation is closed in H. By induction on n, we conclude that $x^{m} \in H$ for all m. Similarly, we can show that $x^{-m}=\left(x^{-1}\right)^{m}$ for all $m \in \mathbb{N}$ using induction. Thus, $\langle x\rangle \subseteq H$.
5. Exercise 2.25

Solution: Suppose G be a group with 3 elements. Assume $G=\{e, a, b\}, e$ is the identity, and e, a, b are distinct. Suppose $a \cdot a=e$. If $a b=b$ then $a=e$ which contradicts to the assumption. If $a b=e$ then $a=b$ which contradicts to the assumption. If $a b=a$ then $b=e$ which contradicts to the assumption. Thus, $a^{2} \neq e$. If $a^{2}=a$, then $a=e$ which contradists to the assumption. Thus, the only possibility is that $a^{2}=b$. Similarly, $b^{2}=a$. Also, $a b=b a=e$. Define $\varphi: G \rightarrow \mathbb{Z}_{3}$ by $\varphi(e)=0$, $\varphi(a)=1$, and $\varphi(b)=2$, then it is a bijection and a homomorphism. Thus, φ is an isomorphism and G is isomorphic to \mathbb{Z}_{3}.

