MATH 403 FALL 2021: HOMEWORK 8 SOLUTION

INSTRUCTOR: DAESUNG KIM

DUE DATE: NOV 5, 2021

1. Consider $\triangle A B C$. Let $A^{\prime}, B^{\prime}, C^{\prime}$ be the midpoints of the sides of $\triangle A B C$. Let H be the orthocenter. Let $A^{\prime \prime}=\frac{1}{2}(H+A), B^{\prime \prime}=\frac{1}{2}(H+B)$, and $C^{\prime \prime}=\frac{1}{2}(H+C)$. Let \mathcal{S} a circle with the line segment $\overline{A^{\prime} A^{\prime \prime}}$ as diameter. Show that $B^{\prime}, B^{\prime \prime}, C^{\prime}, C^{\prime \prime} \in \mathcal{S}$ using Exercise 3.7 and Thales' Theorem (Theorem 3.6).

Solution: By Exercise 3.7, we see that $A^{\prime} B^{\prime} A^{\prime \prime} B^{\prime \prime}$ and $A^{\prime} C^{\prime} A^{\prime \prime} C^{\prime \prime}$ are rectangles. Thus, $\ell_{A^{\prime \prime} B^{\prime}}$ is perpendicular to $\ell_{A^{\prime} B^{\prime}}$. By Thales theorem, we obtain that $B^{\prime} \in \mathcal{S}$. Similarly, we have $\ell_{A^{\prime \prime} B^{\prime \prime}} \perp$ $\ell_{A^{\prime} B^{\prime \prime}}, \ell_{A^{\prime \prime} C^{\prime}} \perp \ell_{A^{\prime} C^{\prime}}$, and $\ell_{A^{\prime \prime} C^{\prime \prime}} \perp \ell_{A^{\prime} C^{\prime \prime}}$. Thus, we conclude that $B^{\prime \prime}, C^{\prime}, C^{\prime \prime}$ belong to the circle \mathcal{S}.
2. (Continued) Show that line segments $\overline{B^{\prime} B^{\prime \prime}}$ and $\overline{C^{\prime} C^{\prime \prime}}$ are also diameters of \mathcal{S}. Let D, E, F be the feet of the altitudes of $\ell_{A}, \ell_{B}, \ell_{C}$. Using Thales' Theorem, deduce that $D, E, F \in \mathcal{S}$.

Solution: Since $\left|A^{\prime} A^{\prime \prime}\right|=\left|B^{\prime} B^{\prime \prime}\right|=\left|C^{\prime} C^{\prime \prime}\right|$ by Exercise $3.7, \overline{A^{\prime} A^{\prime \prime}}$ is a diameter of \mathcal{S}, and

$$
\frac{1}{2}\left(A^{\prime}+A^{\prime \prime}\right)=\frac{1}{4}(A+B+C+H)=\frac{1}{2}\left(B^{\prime}+C^{\prime \prime}\right)=\frac{1}{2}\left(C^{\prime}+C^{\prime \prime}\right)
$$

we see that $\overline{B^{\prime} B^{\prime \prime}}$ and $\overline{C^{\prime} C^{\prime \prime}}$ are also diameters of \mathcal{S}. Since $A^{\prime \prime}$ is on the altitude $\ell_{A H}=\ell_{A}$, we have $\ell_{A^{\prime \prime} D} \perp \ell_{D A^{\prime}}=\ell_{B C}$. By Thales theorem, D belongs to the circle \mathcal{S}. Similarly,

$$
\ell_{B^{\prime \prime} E}=\ell_{B} \perp \ell_{B^{\prime} E}=\ell_{A C}, \quad \ell_{C^{\prime \prime} F}=\ell_{C} \perp \ell_{C^{\prime} F}=\ell_{A B},
$$

which implies $E, F \in \mathcal{S}$.
3. Let $A, B \in \mathbb{R}^{2}$ with $A \neq B$. Find the minimum of $d(P, A)+d(P, B)$ for $P \in \mathbb{R}^{2}$.

Solution: By triangle inequality, for any P in \mathbb{R}^{2}, we have

$$
d(P, A)+d(P, B) \geqslant d(A, B)
$$

Furthermore, if $P=A$, then $d(P, A)+d(P, A)=d(A, B)$. Thus, the minimum is $d(A, B)$.
4. Exercise 3.12

Solution: Let R be the point in $\ell_{A C} \cap \ell_{B D}$. For any P, it follows from triangle inequality that

$$
\begin{array}{r}
d(R, A)+d(R, C)=d(A, C) \leqslant d(P, A)+d(P, C) \\
d(R, B)+d(R, D)=d(B, D) \leqslant d(P, B)+d(P, D)
\end{array}
$$

Therefore, the minimum is $d(A, C)+d(B, D)$ and it is attained when $P=R$.
5. Let $X, Y, A \in \mathbb{R}^{2} \backslash\{O\}$. Suppose $X \cdot A=0$ and $Y \cdot A=0$. Show that O, X, Y are collinear.

Solution: Suppose O, X, Y are not collinear, then there exist $a, b \in \mathbb{R}$ such that $A=a X+b Y$. Then,

$$
A \cdot A=(a X+b Y) \cdot A=a(X \cdot A)+b(Y \cdot A)=0
$$

Thus, $A=O$, which is a contradiction. Therefore, O, X, Y are collinear.

