MATH 403 FALL 2021: EXAM 2 PRACTICE PROBLEMS

1. Definitions

(a) One-to-one, onto, bijection maps.
(b) Fixed points of a map.
(c) Two maps are equal.
(d) Central dilatation, translation, dilatation, central reflection.
(e) Conjugate of α by μ.
(f) Groups, subgroups, Abelian groups, homomorphism, isomorphism.
(g) Scalar product of X, Y, the length of X, the distance between X, Y.

2. Examples

(a) Find one-to-one but not onto maps.
(b) Find onto but not one-to-one maps.
(c) Find two maps α, β such that $\alpha \circ \beta \neq \beta \circ \alpha$
(d) Find two maps α, β such that $\alpha \circ \beta=\beta \circ \alpha$
(e) Find a set of transformations that does not form a group.
(f) Find a bijection $\alpha: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that does not map a line to a line.

3. Proof or Disproof

3.1. Translations and Central dilatations - Basic.

(a) $\tau_{A} \tau_{B}=\tau_{A+B},\left(\tau_{A}\right)^{-1}=\tau_{-A}, \delta_{C, r} \delta_{C, s}=\delta_{C, r s}\left(\delta_{C, r}\right)^{-1}=\delta_{C, 1 / r}$.
(b) $\delta_{r} \circ \tau_{A}=\tau_{r A} \circ \delta_{r}$
(c) $\delta_{A+C, r}=\tau_{C} \delta_{A, r} \tau_{C}^{-1}$.
(d) $\sigma_{C}^{2}=\mathrm{Id}$
(e) $\sigma_{C} \sigma_{D}$ is a translation.
(f) $\delta_{C, r} \circ \delta_{C, r}(X)=X$ for all X implies $r=1$ or $r=-1$.
(g) If $\delta_{C, r}(X)=Y$ then C, X, Y are collinear.
(h) A translation and a central dilatation commute.
(i) For a dilatation $\alpha, \alpha\left(\ell_{A B}\right)=\ell_{\alpha(A) \alpha(B)}$.
(j) For a dilatation $\alpha, \ell_{A B} / / \ell_{\alpha(A) \alpha(B)}$.

3.2. Translations and Central dilatations - Applications.

(a) Translation preserves the centroid of three points.
(b) Every dilatation has at least one fixed point.
(c) Central dilatations preserve midpoints.
(d) Let $\alpha=\delta_{A, 2}$. If A, B, C form a triangle and G is the centroid, then $B, G, C, \alpha(G)$ form a parallelogram.
(e) $\sigma_{D} \sigma_{C} \sigma_{B} \sigma_{A}=\mathrm{Id}$ if and only if $A B C D$ is a parallelogram.

3.3. Group theory.

(a) Let V be a set and G be the set of all bijections $\alpha: V \rightarrow V$. Show that G with composition is a group.
(b) Let G be a group and H be a subset. Then, H is a group if and only if $a b^{-1} \in H$ for all $a, b \in H$.
(c) The set of all translations forms a group.
(d) For fixed $A \neq O,\left\{\tau_{c A}: c \in \mathbb{R}\right\}$ is a group.
(e) For fixed $C \in \mathbb{R}^{2},\left\{\delta_{C, r}: r \in \mathbb{R}, r>0\right\}$ is a group.
(f) The set of all central dilatations forms a group.

