MATH 403 FALL 2021: QUIZ 8 SOLUTION
 DATE: NOV 3, 2021

(a) (5 points) Write down the statement of Thales Theorem.

Solution. Consider a triangle $\triangle A B C$. Let C^{\prime} be the midpoint of A and B. Let \mathcal{S} be the circle with center C^{\prime} and radius $\frac{1}{2}|\overline{A B}|$. (That is, the line segment $\overline{A B}$ is the diameter of \mathcal{S}.) Then, $C \in \mathcal{S}$ if and only if $\overline{A C}$ is perpendicular to $\overline{B C}$.
(b) (5 points) Let $A B C D$ be a rectangle. Show that there exists a circle containing $A B C D$.

Solution. Consider a circle \mathcal{S} whose diameter is $\overline{A C}$. Since $\ell_{A B} \perp \ell_{B C}$, Thales theorem yields $B \in \mathcal{S}$. Similarly, $\ell_{A D} \perp \ell_{D C}$ implies $D \in \mathcal{S}$.

