MATH 403 FALL 2021: HOMEWORK 2 SOLUTION

INSTRUCTOR: DAESUNG KIM
DUE DATE: SEP 10, 2021

1. Exercise 1.14

Solution: (a): Let $n \in \mathbb{N}$ and $A_{i} \in \mathbb{R}^{2}$ for $i=1,2, \cdots, n$. Let G_{i} be the centroid of $A_{1}, A_{2}, \cdots, A_{n}$ except A_{i}, and G the centroid of $A_{i}, i=1,2, \cdots, n$. Then,

$$
G \in \bigcap_{i=1}^{n} \ell_{A_{i} G_{i}}
$$

(b): Let $S=\sum_{i=1}^{n} A_{i}$, then $G_{i}=\frac{1}{n-1}\left(S-A_{i}\right)$. Since

$$
G=\frac{S}{n}=\frac{1}{n}\left(S-A_{i}\right)+\frac{A_{i}}{n}=\frac{n-1}{n}\left(\frac{1}{n-1}\left(S-A_{i}\right)\right)+\frac{A_{i}}{n}=\frac{n-1}{n} G_{i}+\frac{1}{n} A_{i},
$$

we have $G \in \ell_{A_{i} G_{i}}$ for all $i=1,2, \cdots, n$.
2. Exercise 1.15 (a)

Solution: Let M_{1} be the midpoint of A, B, M_{2} of C, D, N_{1} of A, C, N_{2} of B, D, L_{1} of A, D, L_{2} of B, C. That is,

$$
\begin{array}{ll}
M_{1}=\frac{A+B}{2}, & M_{2}=\frac{C+D}{2} \\
N_{1}=\frac{A+C}{2}, & N_{2}=\frac{B+D}{2} \\
L_{1}=\frac{A+D}{2}, & L_{2}=\frac{B+C}{2}
\end{array}
$$

Suppose $P \in \ell_{M_{1} M_{2}} \cap \ell_{N_{1} N_{2}}$, then there exist $t, s \in \mathbb{R}$ such that

$$
P=\frac{1-t}{2}(A+B)+\frac{t}{2}(C+D)=\frac{1-s}{2}(A+C)+\frac{s}{2}(B+D)
$$

One can see that these equations are satisfied when $t=s=\frac{1}{2}$. Furthermore, let $G=\frac{1}{4}(A+B+C+D)$ then

$$
G=\frac{1}{2} L_{1}+\frac{1}{2} L_{2}
$$

so that $G \in \ell_{M_{1} M_{2}} \cap \ell_{N_{1} N_{2}} \cap \ell_{L_{1} L_{2}}$.
3. Exercise 1.15 (b)

Solution: Checking the identity is straightforward. The geometric meaning is that (1) the diagonal $\overline{A C}$ is parallel to $\overline{L_{2} M_{1}}$ and $\overline{M_{2} L_{1}}$, and (2) the length of the diagonal $\overline{A C}$ is twice the length of $\overline{L_{2} M_{1}}$ and $\overline{M_{2} L_{1}}$.
4. Exercise 1.16 (a)

Solution:

$$
E+G=\frac{1}{3}(A+2 B+C+2 D)=F+H
$$

5. Exercise 1.16 (b)

Solution: We have

$$
\begin{aligned}
E+G & =\frac{1}{a+b}(a A+b B)+\frac{1}{c+d}(c C+d D) \\
F+H & =\frac{1}{b+c}(b B+c C)+\frac{1}{d+a}(d D+a A)
\end{aligned}
$$

If $a=c$ and $b=d$, then $E+G=F+H$.

