MATH 403 FALL 2021: HOMEWORK 4

INSTRUCTOR: DAESUNG KIM

DUE DATE: OCT 1, 2021

1. Let $\alpha, \beta: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be two maps.
(a) Show that if α and β are one-to-one, then so is $\alpha \circ \beta$.
(b) Show that if α and β are onto, then so is $\alpha \circ \beta$.
(c) Conclude that if α and β are bijections, then so is $\alpha \circ \beta$.
2. Let $\alpha, \beta, \gamma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be maps. Show that $(\alpha \circ \beta) \circ \gamma=\alpha \circ(\beta \circ \gamma)$.
3. Let $\alpha: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a bijection. Show that the inverse of α is unique. That is, suppose there are two maps $\beta, \gamma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $\alpha \circ \beta=\beta \circ \alpha=\alpha \circ \gamma=\gamma \circ \alpha=\mathrm{Id}$. Then, show that $\beta=\gamma$.
4. (Will not be graded) Let $\alpha, \beta: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be two maps.
(a) Give an example that α is not one-to-one and β is not onto but $\alpha \circ \beta$ is a bijection.
(b) Give an example that $\alpha \circ \beta=\operatorname{Id}$ but α is not the inverse of β.
(Hint: find such examples for $\alpha, \beta: \mathbb{N} \rightarrow \mathbb{N}$ where \mathbb{N} denotes the set of all natural numbers.)
5. Let $\mu: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a bijection. For a map $\alpha: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, the conjugate of α by μ is denoted by $\bar{\alpha}$ and defined by $\bar{\alpha}=\mu \circ \alpha \circ \mu^{-1}$.
(a) Show that $\overline{\alpha \circ \beta}=\bar{\alpha} \circ \bar{\beta}$.
(b) Show that if α is a bijection, then so is $\bar{\alpha}$.
(c) Let α be a bijection. Show that $(\bar{\alpha})^{-1}=\overline{\alpha^{-1}}$.
6. Let $A, C \in \mathbb{R}^{2}$ and $r \in \mathbb{R} \backslash\{0\}$.
(a) The map $\delta_{A+C, r}$ is the conjugate of $\delta_{A, r}$ by τ_{C}. That is, $\delta_{A+C, r}=\tau_{C} \circ \delta_{A, r} \circ\left(\tau_{C}\right)^{-1}$.
(b) $\delta_{C, r}$ maps a line to a parallel line. That is, suppose ℓ is a line. Show that $\delta_{C, r}(\ell)$ is a line and parallel to ℓ.
