MATH 403 FALL 2021: HOMEWORK 4 SOLUTION

INSTRUCTOR: DAESUNG KIM DUE DATE: OCT 1, 2021

1. Let $\alpha, \beta : \mathbb{R}^2 \to \mathbb{R}^2$ be two maps.

(a) Show that if α and β are one-to-one, then so is $\alpha \circ \beta$.

(b) Show that if α and β are onto, then so is $\alpha \circ \beta$.

(c) Conclude that if α and β are bijections, then so is $\alpha \circ \beta$.

Solution:

- (a) If $\alpha\beta(X) = \alpha\beta(Y)$, then $\beta(X) = \beta(Y)$ since α is one-to-one. Since β is one-to-one, X = Y.
- (b) Let $Y \in \mathbb{R}^2$, then there exists $Z \in \mathbb{R}^2$ such that $Y = \alpha(Z)$ since α is onto. Since β is onto, there
- exists *X* such that $Z = \beta(X)$. Thus, $Y = \alpha\beta(X)$, which implies that $\alpha\beta$ is onto.
- (c) This follows from (a) and (b).

2. Let $\alpha, \beta, \gamma : \mathbb{R}^2 \to \mathbb{R}^2$ be maps. Show that $(\alpha \circ \beta) \circ \gamma = \alpha \circ (\beta \circ \gamma)$.

Solution: Let $X \in \mathbb{R}^2$. Then,

$$(\alpha\beta)\gamma(X) = (\alpha\beta)(\gamma(X)) = \alpha(\beta(\gamma(X))) = \alpha(\beta\gamma(X)) = \alpha \circ (\beta \circ \gamma)(X).$$

3. Let $\alpha : \mathbb{R}^2 \to \mathbb{R}^2$ be a bijection. Show that the inverse of α is unique. That is, suppose there are two maps $\beta, \gamma : \mathbb{R}^2 \to \mathbb{R}^2$ such that $\alpha \circ \beta = \beta \circ \alpha = \alpha \circ \gamma = \gamma \circ \alpha = \text{Id}$. Then, show that $\beta = \gamma$.

Solution: By Problem 2 and the definition of inverse map, we have $\beta = \beta \circ \mathrm{Id} = \beta \circ (\alpha \circ \gamma) = (\beta \circ \alpha) \circ \gamma = \mathrm{Id} \circ \gamma = \gamma.$

4. (Will not be graded) Let $\alpha, \beta : \mathbb{R}^2 \to \mathbb{R}^2$ be two maps.

(a) Give an example that α is not one-to-one and β is not onto but $\alpha \circ \beta$ is a bijection.

(b) Give an example that $\alpha \circ \beta = \text{Id but } \alpha$ is not the inverse of β .

(Hint: find such examples for $\alpha, \beta : \mathbb{N} \to \mathbb{N}$ where \mathbb{N} denotes the set of all natural numbers.)

Solution: Define α , β by

 $\alpha(X) = \begin{cases} (n-1,0), & X = (n,0), n \in \mathbb{N}, \\ X, & \text{otherwise}, \end{cases} \qquad \beta(X) = \begin{cases} (n+1,0), & X = (n,0), n \in \mathbb{N} \cup \{0\}, \\ X, & \text{otherwise}. \end{cases}$

Note that α is not one-to-one because $\alpha((1,0)) = \alpha(O) = O$, and β is not onto because there is not X such that $O = \beta(X)$. If X = (n,0) with $n \in \mathbb{N} \cup \{0\}$, then $\alpha(\beta(X)) = \alpha((n+1,0)) = (n,0) = X$. Thus, $\alpha\beta = \text{Id}$.

- 5. Let $\mu : \mathbb{R}^2 \to \mathbb{R}^2$ be a bijection. For a map $\alpha : \mathbb{R}^2 \to \mathbb{R}^2$, the conjugate of α by μ is denoted by $\overline{\alpha}$ and defined by $\overline{\alpha} = \mu \circ \alpha \circ \mu^{-1}$.
 - (a) Show that $\overline{\alpha \circ \beta} = \overline{\alpha} \circ \overline{\beta}$.
 - (b) Show that if α is a bijection, then so is $\overline{\alpha}$.
 - (c) Let α be a bijection. Show that $(\overline{\alpha})^{-1} = \overline{\alpha^{-1}}$.

Solution:

(a)
$$\overline{\alpha \circ \beta} = \mu \circ (\alpha \circ \beta) \mu^{-1} = (\mu \circ \alpha \circ \mu^{-1}) \circ (\mu \circ \beta \circ \mu^{-1}) = \overline{\alpha} \circ \overline{\beta}.$$

(b) This follows from Problem 1 (c).
(c) Note that Id = Id. By Part (a),

 α ∘ *α*⁻¹ = *α* ∘ *α*⁻¹ = Id = Id,
 and
 α⁻¹ ∘ *α* = *α*⁻¹ ∘ *α* = Id = Id.

- 6. Let $A, C \in \mathbb{R}^2$ and $r \in \mathbb{R} \setminus \{0\}$.
 - (a) The map $\delta_{A+C,r}$ is the conjugate of $\delta_{A,r}$ by τ_C . That is, $\delta_{A+C,r} = \tau_C \circ \delta_{A,r} \circ (\tau_C)^{-1}$.
 - (b) $\delta_{C,r}$ maps a line to a parallel line. That is, suppose ℓ is a line. Show that $\delta_{C,r}(\ell)$ is a line and parallel to ℓ .

Solution: (a) For $X \in \mathbb{R}^2$, $\begin{aligned} \tau_C \circ \delta_{A,r}(X) &= \tau_C((1-r)A + rX) \\ &= (1-r)(A+C) + r(X+C) \\ &= \delta_{A+C,r}(X+C) \\ &= \delta_{A+C,r} \circ \tau_C(X). \end{aligned}$ (b) Suppose $\ell = \ell_{AB}$ with distinct A, B. If $P \in \ell$, then P = (1-s)A + sB for some s. Then, $\begin{aligned} \delta_{C,r}(P) &= (1-r)C + r((1-s)A + sB) \\ &= (1-s)((1-r)C + rA) + s((1-r)C + rB) \\ &= (1-s)\delta_{C,r}(A) + s\delta_{C,r}(B). \end{aligned}$ Since $\delta_{C,r}$ is one-to-one, $A' = \delta_{C,r}(A)$ and $B' = \delta_{C,r}(B)$ are distinct. Thus, $\delta_{C,r}(P)$ lies on the line $\ell_{A'B'}$. Since $\begin{aligned} A' - B' &= r(A - B), \end{aligned}$ the lines are parallel.