## MATH 403 FALL 2021: HOMEWORK 4 SOLUTION

INSTRUCTOR: DAESUNG KIM<br>DUE DATE: OCT 1, 2021

1. Let $\alpha, \beta: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be two maps.
(a) Show that if $\alpha$ and $\beta$ are one-to-one, then so is $\alpha \circ \beta$.
(b) Show that if $\alpha$ and $\beta$ are onto, then so is $\alpha \circ \beta$.
(c) Conclude that if $\alpha$ and $\beta$ are bijections, then so is $\alpha \circ \beta$.

## Solution:

(a) If $\alpha \beta(X)=\alpha \beta(Y)$, then $\beta(X)=\beta(Y)$ since $\alpha$ is one-to-one. Since $\beta$ is one-to-one, $X=Y$.
(b) Let $Y \in \mathbb{R}^{2}$, then there exists $Z \in \mathbb{R}^{2}$ such that $Y=\alpha(Z)$ since $\alpha$ is onto. Since $\beta$ is onto, there exists $X$ such that $Z=\beta(X)$. Thus, $Y=\alpha \beta(X)$, which implies that $\alpha \beta$ is onto.
(c) This follows from (a) and (b).
2. Let $\alpha, \beta, \gamma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be maps. Show that $(\alpha \circ \beta) \circ \gamma=\alpha \circ(\beta \circ \gamma)$.

Solution: Let $X \in \mathbb{R}^{2}$. Then,

$$
(\alpha \beta) \gamma(X)=(\alpha \beta)(\gamma(X))=\alpha(\beta(\gamma(X)))=\alpha(\beta \gamma(X))=\alpha \circ(\beta \circ \gamma)(X)
$$

3. Let $\alpha: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a bijection. Show that the inverse of $\alpha$ is unique. That is, suppose there are two maps $\beta, \gamma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $\alpha \circ \beta=\beta \circ \alpha=\alpha \circ \gamma=\gamma \circ \alpha=\mathrm{Id}$. Then, show that $\beta=\gamma$.

Solution: By Problem 2 and the definition of inverse map, we have

$$
\beta=\beta \circ \operatorname{Id}=\beta \circ(\alpha \circ \gamma)=(\beta \circ \alpha) \circ \gamma=\operatorname{Id} \circ \gamma=\gamma
$$

4. (Will not be graded) Let $\alpha, \beta: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be two maps.
(a) Give an example that $\alpha$ is not one-to-one and $\beta$ is not onto but $\alpha \circ \beta$ is a bijection.
(b) Give an example that $\alpha \circ \beta=\operatorname{Id}$ but $\alpha$ is not the inverse of $\beta$.
(Hint: find such examples for $\alpha, \beta: \mathbb{N} \rightarrow \mathbb{N}$ where $\mathbb{N}$ denotes the set of all natural numbers.)
Solution: Define $\alpha, \beta$ by

$$
\alpha(X)=\left\{\begin{array}{ll}
(n-1,0), & X=(n, 0), n \in \mathbb{N}, \\
X, & \text { otherwise },
\end{array} \quad \beta(X)= \begin{cases}(n+1,0), & X=(n, 0), n \in \mathbb{N} \cup\{0\} \\
X, & \text { otherwise }\end{cases}\right.
$$

Note that $\alpha$ is not one-to-one because $\alpha((1,0))=\alpha(O)=O$, and $\beta$ is not onto because there is not $X$ such that $O=\beta(X)$. If $X=(n, 0)$ with $n \in \mathbb{N} \cup\{0\}$, then $\alpha(\beta(X))=\alpha((n+1,0))=(n, 0)=X$. Thus, $\alpha \beta=$ Id.
5. Let $\mu: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a bijection. For a map $\alpha: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, the conjugate of $\alpha$ by $\mu$ is denoted by $\bar{\alpha}$ and defined by $\bar{\alpha}=\mu \circ \alpha \circ \mu^{-1}$.
(a) Show that $\overline{\alpha \circ \beta}=\bar{\alpha} \circ \bar{\beta}$.
(b) Show that if $\alpha$ is a bijection, then so is $\bar{\alpha}$.
(c) Let $\alpha$ be a bijection. Show that $(\bar{\alpha})^{-1}=\overline{\alpha^{-1}}$.

## Solution:

(a) $\overline{\alpha \circ \beta}=\mu \circ(\alpha \circ \beta) \mu^{-1}=\left(\mu \circ \alpha \circ \mu^{-1}\right) \circ\left(\mu \circ \beta \circ \mu^{-1}\right)=\bar{\alpha} \circ \bar{\beta}$.
(b) This follows from Problem 1 (c).
(c) Note that $\overline{\mathrm{Id}}=$ Id. By Part (a),

$$
\bar{\alpha} \circ \overline{\alpha^{-1}}=\overline{\alpha \circ \alpha^{-1}}=\overline{\mathrm{Id}}=\mathrm{Id},
$$

and

$$
\overline{\alpha^{-1}} \circ \bar{\alpha}=\overline{\alpha^{-1} \circ \alpha}=\overline{\mathrm{Id}}=\mathrm{Id} .
$$

6. Let $A, C \in \mathbb{R}^{2}$ and $r \in \mathbb{R} \backslash\{0\}$.
(a) The map $\delta_{A+C, r}$ is the conjugate of $\delta_{A, r}$ by $\tau_{C}$. That is, $\delta_{A+C, r}=\tau_{C} \circ \delta_{A, r} \circ\left(\tau_{C}\right)^{-1}$.
(b) $\delta_{C, r}$ maps a line to a parallel line. That is, suppose $\ell$ is a line. Show that $\delta_{C, r}(\ell)$ is a line and parallel to $\ell$.

## Solution:

(a) For $X \in \mathbb{R}^{2}$,

$$
\begin{aligned}
\tau_{C} \circ \delta_{A, r}(X) & =\tau_{C}((1-r) A+r X) \\
& =(1-r)(A+C)+r(X+C) \\
& =\delta_{A+C, r}(X+C) \\
& =\delta_{A+C, r} \circ \tau_{C}(X) .
\end{aligned}
$$

(b) Suppose $\ell=\ell_{A B}$ with distinct $A, B$. If $P \in \ell$, then $P=(1-s) A+s B$ for some $s$. Then,

$$
\begin{aligned}
\delta_{C, r}(P) & =(1-r) C+r((1-s) A+s B) \\
& =(1-s)((1-r) C+r A)+s((1-r) C+r B) \\
& =(1-s) \delta_{C, r}(A)+s \delta_{C, r}(B)
\end{aligned}
$$

Since $\delta_{C, r}$ is one-to-one, $A^{\prime}=\delta_{C, r}(A)$ and $B^{\prime}=\delta_{C, r}(B)$ are distinct. Thus, $\delta_{C, r}(P)$ lies on the line $\ell_{A^{\prime} B^{\prime}}$. Since

$$
A^{\prime}-B^{\prime}=r(A-B)
$$

the lines are parallel.

