MATH 403 FALL 2021: HOMEWORK 1 SOLUTION

INSTRUCTOR: DAESUNG KIM DUE DATE: SEP 3, 2021

1. For any vectors $A = (a_1, a_2), B = (b_1, b_2)$ and a real number $r \in \mathbb{R}$, we have seen in class that

 $A + B = (a_1 + b_1, a_2 + b_2), \quad rA = (ra_1, ra_2).$

Using these, show the eight properties of addition and scalar multiplications labeled in the textbook by (A1), (A2), (A3), (A4), (M1), (M2), (M3), (M4).

 $\begin{array}{l} \mbox{Solution: Let } A = (a_1, a_2), B = (b_1, b_2), C = (c_1, c_2), r, s \in \mathbb{R}. \\ (A1): \mbox{By definition, } A + B = (a_1 + b_1, a_2 + b_2) \mbox{ and } B + A = (b_1 + a_1, b_2 + a_2). \mbox{Since real numbers are commutative (that is, } a + b = b + a), we have } a_1 + b_1 = b_1 + a_1 \mbox{ and } a_2 + b_2 = b_2 + a_2. \mbox{ Thus, } A + B = B + A. \\ (A2): \mbox{Since } a_1 + (b_1 + c_1) = (a_1 + b_1) + c_1 \mbox{ and } a_2 + (b_2 + c_2) = (a_2 + b_2) + c_2, \mbox{ we have } A + (B + C) = (A + B) + C. \\ (A3): \mbox{Since } 0 + a_1 = a_1 = a_1 + 0 \mbox{ and } 0 + a_2 = a_2 = a_2 + 0, \mbox{ we have } O + A = A = A + O. \\ (A4): \mbox{ Note that } -A = (-1)A = (-a_1, -a_2). \mbox{Since } a_1 + (-a_1) = 0 \mbox{ and } a_2 + (-a_2) = 0, \mbox{ we have } A + (-A) = O. \\ (M1): \mbox{ Since } (r + s)a_1 = ra_1 + sa_1 \mbox{ and } (r + s)a_2 = ra_2 + sa_2, \mbox{ we have } (r + s)A = rA + sA. \\ (M2): \mbox{ Since } r(a_1 + b_1) = ra_1 + rb_1 \mbox{ and } r(a_2 + b_2) = ra_2 + rb_2, \mbox{ we have } r(A + B) = rA + rB. \\ (M3): \mbox{ Since } r(sa_1) = (rs)a_1 \mbox{ and } r(sa_2) = (rs)a_2, \mbox{ we have } r(sA) = (rs)A. \\ (M4): \mbox{ Since } 1 \cdot a_1 = a_1 \mbox{ and } 1 \cdot a_2 = a_2, \mbox{ we have } 1A = A. \end{array}$

2. Using the eight properties only, Do Exercise 1.2, 1.3, 1.4, 1.5.

Solution: (Exercise 1.2): Suppose A + B = A + C. By (A2), we have (-A) + (A + B) = ((-A) + A) + B = ((-A) + A) + C = (-A) + (A + C). Using (A4) and (A3), ((-A) + A) + B = O + B = B, ((-A) + A) + C = O + C = C. Therefore, we conclude B = C. (Exercise 1.3): By (A3), O + O = O. By (M2), we have rO = r(O + O) = rO + rO. By (A3) again, rO = rO + O. By Exercise 1.2 (which follows only from (A1-4) and (M1-4)), we conclude rO + O = rO + rO implies rO = O.

(Exercise 1.4): By (M1), we have

0A = (0+0)A = 0A + 0A.

By (A3), 0A = 0A + O. By Exercise 1.2, we conclude

0A + O = 0A + 0A implies 0A = O.

(Exercise 1.5): Assume that rA = O and $r \neq 0$. By (M3) and (M4), $O = \frac{1}{r}O$ by Exercise 1.3 $= \frac{1}{r}(rA) = 1A$ by (M3) = A by (M4).

3. Exercise 1.6

Solution: Let *M* be the midpoint of *A* and *B*. Then, by definition, we have $M - A = \overrightarrow{AM} = \overrightarrow{MB} = B - M.$ By (A2), (M + M) + (-A) = M + (M - A) by (A2) = M + (B - M) by definition of midpoint = (B - M) + M by (A1) = B + ((-M) + M) by (A2) = B + O = B by (A4) and (A3).

Similarly, we obtain 2M = A + B. Thus, $M = \frac{1}{2}(2M) = \frac{1}{2}(A + B)$ as desired. If A = B, then $M = \frac{1}{2}(A + B) = A = B$. So, the midpoint is well-defined when A = B, that is, A and B do not have to be distict. In this case, M = A = B.

4. Exercise 1.7

Solution: (a): It suffices to show that $M_1 + M_3 = M_2 + M_4$ by definition. Indeed,

$$M_1 + M_3 = \frac{1}{2}(A+B) + \frac{1}{2}(C+D) = \frac{1}{2}(A+B+C+D),$$

$$M_2 + M_4 = \frac{1}{2}(B+C) + \frac{1}{2}(D+A) = \frac{1}{2}(A+B+C+D).$$

Thus, $M_1 M_2 M_3 M_4$ defines a parallelogram.

(b): Suppose A = B. Then, $M_1 = A = B$. In this case, ABCD forms a triangle. Still, $M_1M_2M_3M_4$ defines a parallelogram.

Suppose A = B = C, then $M_1 = M_2 = A = B = C$ and $M_3 = M_4$. In this case, $M_1M_2M_3M_4$ forms a line segment, which is also a parallelogram in our sense.

5. Exercise 1.8

Solution: We have

$$B' - A' = \frac{1}{2}(A + C - B - C) = \frac{1}{2}(A - B)$$

By definition, $\ell_{AB} = \ell_{A'B'}$. Similarly, we have $\ell_{BC} = \ell_{B'C'}$ and $\ell_{CA} = \ell_{C'A'}$. Note that

$$C' - A = \frac{1}{2}(A + B) - A = \frac{1}{2}(B - A) = A' - B.$$

Suppose A', B', C' are given and they are not on a line. Then A'B'C' forms a triangle. Suppose ABC defines a triangle such that A' is the midpoint of B, C, B' is the midpoint of A, C and C' is the midpoint of A, B. By the previous statement, the line ℓ_{AB} passes through C' and is parallel to $\ell_{A'B'}$. Similarly, ℓ_{BC} passes through A' and is parallel to $\ell_{B'C'}$. Since ℓ_{AB} and ℓ_{BC} meet at B, the point B is determined by A', B', C'. Similarly, A and C are determined too. In other words, for given A', B', C', there is only one $\triangle ABC$.

In particular, *A*, *B*, *C* are uniquely determined by *A*', *B*', *C*'. Since A + B = 2C', B + C = 2A', and C + A = 2B', we have A + B + C = A' + B' + C'. Thus, *A*, *B*, *C* can be written as A = (A + B + C) - (B + C) = (A' + B' + C') - 2A', B = (A + B + C) - (C + A) = (A' + B' + C') - 2B', C = (A + B + C) - (A + B) = (A' + B' + C') - 2C'.

6. Let $a, b, c, d, p, q \in \mathbb{R}$. Consider a system of linear equations

$$\begin{cases} ax + by = p, \\ cx + dy = q. \end{cases}$$

(Here, *x* and *y* are unknown variables.) Show that there exists a unique solution (x, y) for the system if and only if $ad - bc \neq 0$.

Solution: Suppose $ad \neq bc$. By multiplying d on the first equation and b on the second, we get adx + bdy = pd and bcx + bdy = qb. By subtracting, we have (ad - bc)x = pd - qb. Since $ad - bc \neq 0$, we obtain x = (pd - qb)/(ad - bc). Since either $b \neq 0$ or $d \neq 0$, y is also determined by x. Therefore, there exists a unique solution.

Suppose ad = bc. If a = 0, then either b = 0 or c = 0. Case 1: a = b = 0. If p = 0, then there are infinitely many solutions. If $p \neq 0$, then there is no solution. Case 2: a = c = 0. Then we have two equations by = p and dy = q. Since x can be any number for this system, there are no solutions or infinitely many solution.

Now assume that ad = bc and none of a, b, c, d are zero. By multiplying d on the first equation and b on the second, we get adx + bdy = pd and bcx + bdy = qb. If pd = qb, then there are infinitely many solutions. Otherwise, there is no solution.

Therefore, if there exists a unique solution, then $ad \neq bc$.

7. Exercise 1.11

Solution: Consider $\triangle ABC$. Then the centroid *G* of *ABC* is $G = \frac{1}{3}(A + B + C)$. Let A', B', C' be the midpoints of *B* and *C*, *C* and *A*, and *A* and *B* respectively. Then, the centroid *G'* of A'B'C' is

$$G' = \frac{1}{3}(A' + B' + C') = \frac{1}{3}\left(\frac{1}{2}(B + C) + \frac{1}{2}(C + A)\frac{1}{2}(A + B)\right) = \frac{1}{3}(A + B + C).$$

8. Exercise 1.13

Solution: Let *M* be the midpoint of *B*, *C* and *N* the midpoint of *C*, *D*. Let *P* be the intersection of ℓ_{AM} and ℓ_{BD} , and Q the intersection of ℓ_{AN} and ℓ_{BD} . We want to show that *P* and *Q* trisect the diagonal \overline{BD} .

Since *P* lies on ℓ_{AM} and ℓ_{BD} , there exist $s, t \in \mathbb{R}$ such that

$$P = (1-t)B + tD = (1-s)A + sM = (1-s)A + \frac{s}{2}B + \frac{s}{2}C.$$

Since *ABCD* is a parallelogram, we have A + C = B + D. Replacing A with B + D - C, we obtain

$$(\frac{s}{2}-t)B + (s+t-1)D = (\frac{3s}{2}-1)C.$$

If $\frac{3s}{2} - 1 \neq 0$, then we see that *C* is on the line ℓ_{BD} . In this case, *A* and *C* are on the diagonal through *B*, *D* so it is trivial. If *C* is not on the line ℓ_{BD} , then $\frac{3s}{2} = 1$, that is s = 2/3. Thus, t = 2/3 and so *P* trisects \overline{BD} . Similarly, *Q* trisects \overline{BD} .