MATH 403 FALL 2021: HOMEWORK 1 SOLUTION

INSTRUCTOR: DAESUNG KIM
DUE DATE: SEP 3, 2021

1. For any vectors $A=\left(a_{1}, a_{2}\right), B=\left(b_{1}, b_{2}\right)$ and a real number $r \in \mathbb{R}$, we have seen in class that

$$
A+B=\left(a_{1}+b_{1}, a_{2}+b_{2}\right), \quad r A=\left(r a_{1}, r a_{2}\right)
$$

Using these, show the eight properties of addition and scalar multiplications labeled in the textbook by (A1), (A2), (A3), (A4), (M1), (M2), (M3), (M4).

Solution: Let $A=\left(a_{1}, a_{2}\right), B=\left(b_{1}, b_{2}\right), C=\left(c_{1}, c_{2}\right), r, s \in \mathbb{R}$.
(A1): By definition, $A+B=\left(a_{1}+b_{1}, a_{2}+b_{2}\right)$ and $B+A=\left(b_{1}+a_{1}, b_{2}+a_{2}\right)$. Since real numbers are commutative (that is, $a+b=b+a$), we have $a_{1}+b_{1}=b_{1}+a_{1}$ and $a_{2}+b_{2}=b_{2}+a_{2}$. Thus, $A+B=B+A$.
(A2): Since $a_{1}+\left(b_{1}+c_{1}\right)=\left(a_{1}+b_{1}\right)+c_{1}$ and $a_{2}+\left(b_{2}+c_{2}\right)=\left(a_{2}+b_{2}\right)+c_{2}$, we have $A+(B+C)=$ $(A+B)+C$.
(A3): Since $0+a_{1}=a_{1}=a_{1}+0$ and $0+a_{2}=a_{2}=a_{2}+0$, we have $O+A=A=A+O$.
(A4): Note that $-A=(-1) A=\left(-a_{1},-a_{2}\right)$. Since $a_{1}+\left(-a_{1}\right)=0$ and $a_{2}+\left(-a_{2}\right)=0$, we have $A+(-A)=O$.
(M1): Since $(r+s) a_{1}=r a_{1}+s a_{1}$ and $(r+s) a_{2}=r a_{2}+s a_{2}$, we have $(r+s) A=r A+s A$.
(M2): Since $r\left(a_{1}+b_{1}\right)=r a_{1}+r b_{1}$ and $r\left(a_{2}+b_{2}\right)=r a_{2}+r b_{2}$, we have $r(A+B)=r A+r B$.
(M3): Since $r\left(s a_{1}\right)=(r s) a_{1}$ and $r\left(s a_{2}\right)=(r s) a_{2}$, we have $r(s A)=(r s) A$.
(M4): Since $1 \cdot a_{1}=a_{1}$ and $1 \cdot a_{2}=a_{2}$, we have $1 A=A$.
2. Using the eight properties only, Do Exercise 1.2, 1.3, 1.4, 1.5.

Solution: (Exercise 1.2): Suppose $A+B=A+C$. By (A2), we have

$$
(-A)+(A+B)=((-A)+A)+B=((-A)+A)+C=(-A)+(A+C)
$$

Using (A4) and (A3),

$$
((-A)+A)+B=O+B=B, \quad((-A)+A)+C=O+C=C
$$

Therefore, we conclude $B=C$.
(Exercise 1.3): By (A3), $O+O=O$. By (M2), we have

$$
r O=r(O+O)=r O+r O
$$

By (A3) again, $r O=r O+O$. By Exercise 1.2 (which follows only from (A1-4) and (M1-4)), we conclude

$$
r O+O=r O+r O \text { implies } r O=O
$$

(Exercise 1.4): By (M1), we have

$$
0 A=(0+0) A=0 A+0 A
$$

By (A3), $0 A=0 A+O$. By Exercise 1.2, we conclude

$$
0 A+O=0 A+0 A \text { implies } 0 A=O
$$

(Exercise 1.5): Assume that $r A=O$ and $r \neq 0$. By (M3) and (M4),

$$
\begin{aligned}
O & =\frac{1}{r} O \quad \text { by Exercise } 1.3 \\
& =\frac{1}{r}(r A)=1 A \quad \text { by }(\mathrm{M} 3) \\
& =A \quad \text { by }(\mathrm{M} 4)
\end{aligned}
$$

3. Exercise 1.6

Solution: Let M be the midpoint of A and B. Then, by definition, we have

$$
M-A=\overrightarrow{A M}=\overrightarrow{M B}=B-M
$$

By (A2),

$$
\begin{array}{rlrl}
(M+M)+(-A) & =M+(M-A) & & \text { by (A2) } \\
& =M+(B-M) & \text { by definition of midpoint } \\
& =(B-M)+M & \text { by (A1) } \\
& =B+((-M)+M) \quad \text { by (A2) } \\
& =B+O=B \quad \text { by (A4) and (A3). }
\end{array}
$$

Similarly, we obtain $2 M=A+B$. Thus, $M=\frac{1}{2}(2 M)=\frac{1}{2}(A+B)$ as desired. If $A=B$, then $M=\frac{1}{2}(A+B)=A=B$. So, the midpoint is well-defined when $A=B$, that is, A and B do not have to be distict. In this case, $M=A=B$.
4. Exercise 1.7

Solution: (a): It suffices to show that $M_{1}+M_{3}=M_{2}+M_{4}$ by definition. Indeed,

$$
\begin{aligned}
& M_{1}+M_{3}=\frac{1}{2}(A+B)+\frac{1}{2}(C+D)=\frac{1}{2}(A+B+C+D), \\
& M_{2}+M_{4}=\frac{1}{2}(B+C)+\frac{1}{2}(D+A)=\frac{1}{2}(A+B+C+D)
\end{aligned}
$$

Thus, $M_{1} M_{2} M_{3} M_{4}$ defines a parallelogram.
(b): Suppose $A=B$. Then, $M_{1}=A=B$. In this case, $A B C D$ forms a triangle. Still, $M_{1} M_{2} M_{3} M_{4}$ defines a parallelogram.

Suppose $A=B=C$, then $M_{1}=M_{2}=A=B=C$ and $M_{3}=M_{4}$. In this case, $M_{1} M_{2} M_{3} M_{4}$ forms a line segment, which is also a parallelogram in our sense.
5. Exercise 1.8

Solution: We have

$$
B^{\prime}-A^{\prime}=\frac{1}{2}(A+C-B-C)=\frac{1}{2}(A-B)
$$

By definition, $\ell_{A B}=\ell_{A^{\prime} B^{\prime}}$. Similarly, we have $\ell_{B C}=\ell_{B^{\prime} C^{\prime}}$ and $\ell_{C A}=\ell_{C^{\prime} A^{\prime}}$. Note that

$$
C^{\prime}-A=\frac{1}{2}(A+B)-A=\frac{1}{2}(B-A)=A^{\prime}-B .
$$

Suppose $A^{\prime}, B^{\prime}, C^{\prime}$ are given and they are not on a line. Then $A^{\prime} B^{\prime} C^{\prime}$ forms a triangle. Suppose $A B C$ defines a triangle such that A^{\prime} is the midpoint of B, C, B^{\prime} is the midpoint of A, C and C^{\prime} is the midpoint of A, B. By the previous statement, the line $\ell_{A B}$ passes through C^{\prime} and is parallel to $\ell_{A^{\prime} B^{\prime}}$. Similarly, $\ell_{B C}$ passes through A^{\prime} and is parallel to $\ell_{B^{\prime} C^{\prime}}$. Since $\ell_{A B}$ and $\ell_{B C}$ meet at B, the point B is determined by $A^{\prime}, B^{\prime}, C^{\prime}$. Similarly, A and C are determined too. In other words, for given $A^{\prime}, B^{\prime}, C^{\prime}$, there is only one $\triangle A B C$.

In particular, A, B, C are uniquely determined by $A^{\prime}, B^{\prime}, C^{\prime}$. Since $A+B=2 C^{\prime}, B+C=2 A^{\prime}$, and $C+A=2 B^{\prime}$, we have $A+B+C=A^{\prime}+B^{\prime}+C^{\prime}$. Thus, A, B, C can be written as

$$
\begin{aligned}
& A=(A+B+C)-(B+C)=\left(A^{\prime}+B^{\prime}+C^{\prime}\right)-2 A^{\prime} \\
& B=(A+B+C)-(C+A)=\left(A^{\prime}+B^{\prime}+C^{\prime}\right)-2 B^{\prime} \\
& C=(A+B+C)-(A+B)=\left(A^{\prime}+B^{\prime}+C^{\prime}\right)-2 C^{\prime}
\end{aligned}
$$

6. Let $a, b, c, d, p, q \in \mathbb{R}$. Consider a system of linear equations

$$
\left\{\begin{array}{l}
a x+b y=p \\
c x+d y=q
\end{array}\right.
$$

(Here, x and y are unknown variables.) Show that there exists a unique solution (x, y) for the system if and only if $a d-b c \neq 0$.

Solution: Suppose $a d \neq b c$. By multiplying d on the first equation and b on the second, we get $a d x+b d y=p d$ and $b c x+b d y=q b$. By subtracting, we have $(a d-b c) x=p d-q b$. Since $a d-b c \neq 0$, we obtain $x=(p d-q b) /(a d-b c)$. Since either $b \neq 0$ or $d \neq 0, y$ is also determined by x. Therefore, there exists a unique solution.

Suppose $a d=b c$. If $a=0$, then either $b=0$ or $c=0$. Case $1: a=b=0$. If $p=0$, then there are infinitely many solutions. If $p \neq 0$, then there is no solution. Case 2: $a=c=0$. Then we have two equations $b y=p$ and $d y=q$. Since x can be any number for this system, there are no solutions or infinitely many solution.

Now assume that $a d=b c$ and none of a, b, c, d are zero. By multiplying d on the first equation and b on the second, we get $a d x+b d y=p d$ and $b c x+b d y=q b$. If $p d=q b$, then there are infinitely many solutions. Otherwise, there is no solution.

Therefore, if there exists a unique solution, then $a d \neq b c$.
7. Exercise 1.11

Solution: Consider $\triangle A B C$. Then the centroid G of $A B C$ is $G=\frac{1}{3}(A+B+C)$. Let $A^{\prime}, B^{\prime}, C^{\prime}$ be the midpoints of B and C, C and A, and A and B respectively. Then, the centroid G^{\prime} of $A^{\prime} B^{\prime} C^{\prime}$ is

$$
G^{\prime}=\frac{1}{3}\left(A^{\prime}+B^{\prime}+C^{\prime}\right)=\frac{1}{3}\left(\frac{1}{2}(B+C)+\frac{1}{2}(C+A) \frac{1}{2}(A+B)\right)=\frac{1}{3}(A+B+C)
$$

8. Exercise 1.13

Solution: Let M be the midpoint of B, C and N the midpoint of C, D. Let P be the intersection of $\ell_{A M}$ and $\ell_{B D}$, and Q the intersection of $\ell_{A N}$ and $\ell_{B D}$. We want to show that P and Q trisect the diagonal $\overline{B D}$.

Since P lies on $\ell_{A M}$ and $\ell_{B D}$, there exist $s, t \in \mathbb{R}$ such that

$$
P=(1-t) B+t D=(1-s) A+s M=(1-s) A+\frac{s}{2} B+\frac{s}{2} C
$$

Since $A B C D$ is a parallelogram, we have $A+C=B+D$. Replacing A with $B+D-C$, we obtain

$$
\left(\frac{s}{2}-t\right) B+(s+t-1) D=\left(\frac{3 s}{2}-1\right) C
$$

If $\frac{3 s}{2}-1 \neq 0$, then we see that C is on the line $\ell_{B D}$. In this case, A and C are on the diagonal through B, D so it is trivial. If C is not on the line $\ell_{B D}$, then $\frac{3 s}{2}=1$, that is $s=2 / 3$. Thus, $t=2 / 3$ and so P trisects $\overline{B D}$. Similarly, Q trisects $\overline{B D}$.

