MATH 403 LECTURE NOTE
 WEEK 11

DAESUNG KIM

1. Projections (Sec. 3.5)

Let $X, Y \in \mathbb{R}^{2}, X \neq O$. The (orthogonal) projection of Y to X is a scalar multiple of X (that is, a vector lying on the line $\ell_{O X}$) such that $Y-c X$ is orthogonal to $\ell_{O X}$. Thus, we have

$$
(Y-c X) \cdot X=0
$$

which implies $c=X \cdot Y /|X|^{2}$. We define

$$
\operatorname{Proj}_{X} Y=\frac{X \cdot Y}{|X|^{2}} X
$$

We call a vector X is a unit vector if $|X|=1$. If X is a unit vector, then $\operatorname{Proj}_{X} Y=(X \cdot Y) X$.

2. ANGles (SEC. 3.6)

Let $X, Y \in \mathbb{R}^{2}$ and θ be the angle between X and Y. This angle is chosen so that $-\pi<\theta \leqslant \pi$. We choose the sign of the angle according to the counterclockwise orientation from X to Y. Then, the angle can be written as

$$
\cos \theta=\frac{X \cdot Y}{|X||Y|}
$$

We denote by $\theta=\measuredangle(X, Y)$.
For a triangle $\triangle A B C$, the area is denoted by $|\triangle A B C|$.
Proposition 2.1. Let $X, Y \in \mathbb{R}^{2}$ be nonzero, then

$$
|\triangle O X Y|=\frac{1}{2}|X\|Y\| \sin \measuredangle(X, Y)|
$$

Proof. Note that $\operatorname{Proj}_{X} Y=\cos \theta|Y| X /|X|$, where $\theta=\measuredangle(X, Y) \in(-\pi, p i]$. Then,

$$
|\triangle O X Y|=\frac{1}{2}|X|\left|Y-\operatorname{Proj}_{X} Y\right|=\frac{1}{2}|X||Y|\left|\frac{Y}{|Y|}-\cos \theta \frac{X}{|X|}\right|
$$

Let $Z=X /|X|$ and $W=Y /|Y|$, then $|Z|=|W|=1$ and $Z \cdot W=\cos \theta$. Thus,

$$
|W-\cos \theta Z|^{2}=|W|^{2}-2 \cos \theta Z \cdot W+\cos ^{2} \theta|Z|^{2}=1-\cos ^{2} \theta=\sin ^{2} \theta
$$

which finishes the proof.
For $X=\left(x_{1}, x_{2}\right)$ and $Y=\left(y_{1}, y_{2}\right)$, we define the determinant of X, Y by

$$
\operatorname{det}(X, Y)=\left|\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right|=x_{1} y_{2}-x_{2} y_{1}
$$

Proposition 2.2. Let $X, Y \in \mathbb{R}^{2}$ and $\theta=\measuredangle(X, Y)$, then

$$
\operatorname{det}(X, Y)=|X||Y| \sin \theta
$$

Proof. Let Z be the vector obtained from X by rotating $\pi / 2$ counterclockwise. If $X=\left(x_{1}, x_{2}\right)$ and $Y=$ $\left(y_{1}, y_{2}\right)$, then $Z=\left(-x_{2}, x_{1}\right)$ and $Y \cdot Z=|X||Y| \cos (\pi / 2-\theta)=|X||Y| \sin \theta=\operatorname{det}(X, Y)$.
Proposition 2.3. Let $X, Y \in \mathbb{R}^{2}$.
(1) $\operatorname{det}(X, Y)>0$ if and only if $\measuredangle(X, Y) \in(0, \pi)$.
(2) $\operatorname{det}(X, Y)<0$ if and only if $\measuredangle(X, Y) \in(-\pi, 0)$.
(3) $\operatorname{det}(X, Y)=0$ if and only if $\measuredangle(X, Y) \in\{0, \pi\}$.
(4) $|\operatorname{det}(X, Y)|=2|\triangle O X Y|$.

Proposition 2.4. Let $X, Y \in \mathbb{R}^{2}$, then

$$
|X-Y|^{2}=|X|^{2}+|Y|^{2}-2 \cos \measuredangle(X, Y)|X||Y|
$$

Theorem 2.5 (Heron's formula). Consider a triangle $\triangle O X Y$. Let $a=|X|, b=|Y|, c=|X-Y|$, and $s=$ $\frac{1}{2}(a+b+c)$. Then,

$$
|\triangle O X Y|=\sqrt{s(s-a)(s-b)(s-c)}
$$

Proof. HW.

3. EQUATION OF A LINE (SEC. 3.7)

Consider a line ℓ through P and orthogonal to a given vector $N \neq O$. Then, $X \in \ell$ if and only if $(X-P) \cdot N=0$. The equation $X \cdot N=P \cdot N$ is called the equation of the line ℓ.

References

[T] Philippe Tondeur, Vectors and Transformations in Plane Geometry, Publish Or Perish, Inc. 1993

Department of Mathematics, University of Illinois at Urbana-Champaign
E-mail address:daesungk@illinois.edu

