MATH 403 LECTURE NOTE WEEK 11

DAESUNG KIM

1. PROJECTIONS (SEC. 3.5)

Let $X, Y \in \mathbb{R}^2$, $X \neq O$. The (orthogonal) projection of Y to X is a scalar multiple of X (that is, a vector lying on the line ℓ_{OX}) such that Y - cX is orthogonal to ℓ_{OX} . Thus, we have

$$(Y - cX) \cdot X = 0,$$

which implies $c = X \cdot Y / |X|^2$. We define

$$\operatorname{Proj}_X Y = \frac{X \cdot Y}{|X|^2} X.$$

We call a vector *X* is a unit vector if |X| = 1. If *X* is a unit vector, then $\operatorname{Proj}_X Y = (X \cdot Y)X$.

2. ANGLES (SEC. 3.6)

Let $X, Y \in \mathbb{R}^2$ and θ be the angle between X and Y. This angle is chosen so that $-\pi < \theta \leq \pi$. We choose the sign of the angle according to the counterclockwise orientation from X to Y. Then, the angle can be written as

$$\cos \theta = \frac{X \cdot Y}{|X||Y|}$$

We denote by $\theta = \measuredangle(X, Y)$.

For a triangle $\triangle ABC$, the area is denoted by $|\triangle ABC|$.

Proposition 2.1. Let $X, Y \in \mathbb{R}^2$ be nonzero, then

$$|\triangle OXY| = \frac{1}{2}|X||Y||\sin\measuredangle(X,Y)|$$

Proof. Note that $\operatorname{Proj}_X Y = \cos \theta |Y| X / |X|$, where $\theta = \measuredangle (X, Y) \in (-\pi, pi]$. Then,

$$|\triangle OXY| = \frac{1}{2}|X||Y - \operatorname{Proj}_X Y| = \frac{1}{2}|X||Y| \left| \frac{Y}{|Y|} - \cos\theta \frac{X}{|X|} \right|$$

Let Z = X/|X| and W = Y/|Y|, then |Z| = |W| = 1 and $Z \cdot W = \cos \theta$. Thus,

$$W - \cos\theta Z|^2 = |W|^2 - 2\cos\theta Z \cdot W + \cos^2\theta |Z|^2 = 1 - \cos^2\theta = \sin^2\theta,$$

which finishes the proof.

For $X = (x_1, x_2)$ and $Y = (y_1, y_2)$, we define the determinant of X, Y by

$$\det(X,Y) = \begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix} = x_1 y_2 - x_2 y_1.$$

Proposition 2.2. Let $X, Y \in \mathbb{R}^2$ and $\theta = \measuredangle(X, Y)$, then

$$\det(X, Y) = |X||Y|\sin\theta.$$

Proof. Let *Z* be the vector obtained from *X* by rotating $\pi/2$ counterclockwise. If $X = (x_1, x_2)$ and $Y = (y_1, y_2)$, then $Z = (-x_2, x_1)$ and $Y \cdot Z = |X||Y|\cos(\pi/2 - \theta) = |X||Y|\sin\theta = \det(X, Y)$.

Proposition 2.3. Let $X, Y \in \mathbb{R}^2$.

- (1) det(X, Y) > 0 if and only if $\measuredangle(X, Y) \in (0, \pi)$.
- (2) det(X, Y) < 0 if and only if $\measuredangle(X, Y) \in (-\pi, 0)$.

(3) det(X,Y) = 0 if and only if ∠(X,Y) ∈ {0, π}.
(4) |det(X,Y)| = 2|△OXY|.

Proposition 2.4. Let $X, Y \in \mathbb{R}^2$, then

$$|X - Y|^{2} = |X|^{2} + |Y|^{2} - 2\cos\measuredangle(X, Y)|X||Y|.$$

Theorem 2.5 (Heron's formula). Consider a triangle $\triangle OXY$. Let a = |X|, b = |Y|, c = |X - Y|, and $s = \frac{1}{2}(a + b + c)$. Then,

$$|\triangle OXY| = \sqrt{s(s-a)(s-b)(s-c)}.$$

Proof. HW.

3. EQUATION OF A LINE (SEC. 3.7)

Consider a line ℓ through P and orthogonal to a given vector $N \neq O$. Then, $X \in \ell$ if and only if $(X - P) \cdot N = 0$. The equation $X \cdot N = P \cdot N$ is called the equation of the line ℓ .

References

[T] Philippe Tondeur, Vectors and Transformations in Plane Geometry, Publish Or Perish, Inc. 1993

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN *E-mail address*:daesungk@illinois.edu