MATH 403 FALL 2021: HOMEWORK 3 SOLUTION

INSTRUCTOR: DAESUNG KIM
DUE DATE: SEP 17, 2021

1. Exercise 1.17

Solution: Let $A, B, C \in \mathbb{R}^{2}$ and $a \in \mathbb{R}$ be given. Consider

$$
\ell=\left\{P \in \mathbb{R}^{2}: P=a A+b B+c C, a+b+c=1\right\} .
$$

Since $P=b(B+a(A-C))+(1-b)(C+a(A-C))$ for $b \in \mathbb{R}, \ell$ is a line. Since $B+a(A-C), C+a(A-C) \in$ ℓ and

$$
(B+a(A-C))-(C+a(A-C))=B-C
$$

ℓ is parallel to $\ell_{B C}$.
2. Exercise 1.18

Solution: Set

$$
\frac{1}{6}(A+2 B+3 C)+X(a A+b B+c C)=(1+X)\left(\frac{1}{5}(2 A+2 B+C)\right)
$$

with $a+b+c=1$. Comparing the coefficients of A, B, C, we get

$$
\begin{aligned}
& \frac{1}{6}+a X=\frac{2}{5}(X+1) \\
& \frac{1}{3}+b X=\frac{2}{5}(X+1) \\
& \frac{1}{2}+c X=\frac{1}{5}(X+1)
\end{aligned}
$$

Thus,

$$
(a-2 / 5) X=\frac{7}{30}, \quad(b-2 / 5) X=\frac{1}{15}, \quad(c-1 / 5) X=-\frac{3}{10} .
$$

Since $X>0, a$ and b cannot be zero. Thus, $c=0, X=3 / 2, a=5 / 9$, and $b=4 / 9$.
3. Exercise 1.20

Solution: Since

$$
\begin{aligned}
G-A & =\frac{b}{a+b+c}(B-A)+\frac{c}{a+b+c}(C-A), \\
A^{\prime}-A & =\frac{b}{b+c}(B-A)+\frac{c}{b+c}(C-A),
\end{aligned}
$$

we see that

$$
\frac{G-A}{A^{\prime}-A}=\frac{b+c}{a+b+c}
$$

Similarly,

$$
\frac{G-B}{B^{\prime}-B}=\frac{c+a}{a+b+c}, \quad \frac{G-C}{C^{\prime}-C}=\frac{a+b}{a+b+c}
$$

4. Exercise 1.21

Solution: Since

$$
\begin{aligned}
G-A & =\frac{b}{a+b+c}(B-A)+\frac{c}{a+b+c}(C-A) \\
G-A^{\prime} & =(G-A)-\left(A^{\prime}-A\right)=-\frac{b}{a+b+c} \frac{a}{b+c}(B-A)-\frac{c}{a+b+c} \frac{a}{b+c}(C-A),
\end{aligned}
$$

we have

$$
\frac{G-A}{G-A^{\prime}}=-\frac{b+c}{a}=1-\frac{a+b+c}{a} .
$$

By symmetry and arithmetic-geometric inequality, we get

$$
\begin{aligned}
\frac{G-A}{G-A^{\prime}}+\frac{G-B}{G-B^{\prime}}+\frac{G-C}{G-C^{\prime}} & =3-(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \\
& =-\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)-\left(\frac{c}{a}+\frac{a}{b}+\frac{b}{c}\right) \\
& \leq-6
\end{aligned}
$$

and equality holds if and only if $a=b=c$. Thus, G is the centroid of $\triangle A B C$.
5. Let $A=(1,1), B=(3,0), C=(4,5)$. Let

$$
A^{\prime}=\frac{1}{3} B+\frac{2}{3} C, \quad B^{\prime}=\frac{4}{9} C+\frac{5}{9} A,
$$

and C^{\prime} be a point on the line joining A and B. Suppose $\ell_{A A^{\prime}}, \ell_{B B^{\prime}}$, and $\ell_{C C^{\prime}}$ are concurrent.
(a) Find C^{\prime}.
(b) Let G be the intersection of $\ell_{A A^{\prime}}, \ell_{B B^{\prime}}$, and $\ell_{C C^{\prime}}$. Find the barycentric coordinate of G with respect to A, B, C.

Solution: (a): Let $a=5, b=2$, and $c=4$. Then,

$$
A^{\prime}=\frac{b B+c C}{b+c}, \quad B^{\prime}=\frac{c C+a A}{c+a}
$$

Thus, Theorem of Ceva yields

$$
C^{\prime}=\frac{a A+b B}{a+b}=\frac{5 A+2 B}{7}
$$

(b): The barycentric coordinate of G is $(5 / 11,2 / 11,4 / 11)$.

