MATH 403 FALL 2021: HOMEWORK 8

INSTRUCTOR: DAESUNG KIM DUE DATE: NOV 5, 2021

- 1. Consider $\triangle ABC$. Let A', B', C' be the midpoints of the sides of $\triangle ABC$. Let H be the orthocenter. Let $A'' = \frac{1}{2}(H + A), B'' = \frac{1}{2}(H + B)$, and $C'' = \frac{1}{2}(H + C)$. Let S a circle with the line segment $\overline{A'A''}$ as diameter. Show that $B', B'', C', C'' \in S$ using Exercise 3.7 and Thales' Theorem (Theorem 3.6).
- 2. (Continued) Show that line segments $\overline{B'B''}$ and $\overline{C'C''}$ are also diameters of S. Let D, E, F be the feet of the altitudes of ℓ_A, ℓ_B, ℓ_C . Using Thales' Theorem, deduce that $D, E, F \in S$.
- 3. Let $A, B \in \mathbb{R}^2$ with $A \neq B$. Find the minimum of d(P, A) + d(P, B) for $P \in \mathbb{R}^2$.
- 4. Exercise 3.12
- 5. Let $X, Y, A \in \mathbb{R}^2 \setminus \{O\}$. Suppose $X \cdot A = 0$ and $Y \cdot A = 0$. Show that O, X, Y are collinear.