MATH 403 FALL 2021: HOMEWORK 8

INSTRUCTOR: DAESUNG KIM

DUE DATE: NOV 5, 2021

1. Consider $\triangle A B C$. Let $A^{\prime}, B^{\prime}, C^{\prime}$ be the midpoints of the sides of $\triangle A B C$. Let H be the orthocenter. Let $A^{\prime \prime}=\frac{1}{2}(H+A), B^{\prime \prime}=\frac{1}{2}(H+B)$, and $C^{\prime \prime}=\frac{1}{2}(H+C)$. Let \mathcal{S} a circle with the line segment $\overline{A^{\prime} A^{\prime \prime}}$ as diameter. Show that $B^{\prime}, B^{\prime \prime}, C^{\prime}, C^{\prime \prime} \in \mathcal{S}$ using Exercise 3.7 and Thales' Theorem (Theorem 3.6).
2. (Continued) Show that line segments $\overline{B^{\prime} B^{\prime \prime}}$ and $\overline{C^{\prime} C^{\prime \prime}}$ are also diameters of \mathcal{S}. Let D, E, F be the feet of the altitudes of $\ell_{A}, \ell_{B}, \ell_{C}$. Using Thales' Theorem, deduce that $D, E, F \in \mathcal{S}$.
3. Let $A, B \in \mathbb{R}^{2}$ with $A \neq B$. Find the minimum of $d(P, A)+d(P, B)$ for $P \in \mathbb{R}^{2}$.
4. Exercise 3.12
5. Let $X, Y, A \in \mathbb{R}^{2} \backslash\{O\}$. Suppose $X \cdot A=0$ and $Y \cdot A=0$. Show that O, X, Y are collinear.
