MATH 403 FALL 2021: EXAM 3 PRACTICE PROBLEMS

1. Definitions

(a) Rhombus, Rectangle, Circle
(b) Perpendicular bisectors, Altitude, The foot of altitude, Circumcenter, Orthocenter
(c) Distance between X and Y, The length of X
(d) Orthogonal projection, Angle, Determinant
(e) An isometry, A linear isometry, A linear map

2. Statements of Theorems (and proofs)

(a) Pythagoras Theorem, Thales Theorem, Parallelogram Law
(b) Triangle inequality, Cauchy-Schwarz inequality
(c) Nine point circle theorem

3. Examples

Give an example, or explain why no such example exists.
(a) $X, Y \neq O$, and $|X+Y|=|X-Y|$.
(b) $|X|=4,|Y|=2$, and $X \cdot Y=9$.
(c) A triangle $\triangle A B C$ whose orthocenter and circumcenter coincide.
(d) $|X|=1,|Y|=2$, and $|X-Y|=4$.

4. Proof or Disproof

4.1. Scalar Product.

(a) If $X \cdot Y=0$ and $Y \neq O$, then $X=O$.
(b) If $|X|=3,|Y|=4$, then $|X \cdot Y| \leqslant 12$.
(c) If $\alpha: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ satisfies $X \cdot Y=\alpha(X) \cdot \alpha(Y)$ for all X, Y, then $|\alpha(X)-\alpha(Y)|=|X-Y|$ for all X, Y.
(d) If X is perpendicular to Y, then $|X+Y|^{2}=|X|^{2}+|Y|^{2}$.
(e) For $X \neq O$, the projection $\operatorname{Proj}_{Y} X$ is perpendicular to X.

4.2. Triangles.

(a) The altitudes (the Perpendicular bisectors) of a triangle are concurrent.
(b) Formulas for the area of a triangle.
(c) If X is on the perpendicular bisector of $\overline{A B}$, then $|X-A|=|X-B|$.
(d) In the setting of Nine point circle theorem, $\left|A^{\prime}-A^{\prime \prime}\right|=\left|B^{\prime}-B^{\prime \prime}\right|=\left|C^{\prime}-C^{\prime \prime}\right|$.
4.3. Isometry.
(a) The set of all isometries forms a group.
(b) If α is an isometry, then $(\alpha(X)-\alpha(Z)) \cdot(\alpha(Y)-\alpha(Z))=(X-Z) \cdot(Y-Z)$ for all X, Y, Z.
(c) Every dilatation is an isometry.

