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1. CIRCLES (SEC. 3.3)

Definition 1.1. The circle with center D and radius r is the set of points X satisfying |X −D| = r.

Theorem 1.2 (Thales). Consider a triangle 4ABC. Let C ′ be the midpoint of A and B. Let S be the circle with
center C ′ and radius 1

2 |AB|. (That is, the line segment AB is the diameter of S.) Then, C ∈ S if and only if AC is
perpendicular to BC.

Proof. The point C lies on S if and only if

|C − 1

2
(A+B)| = |1

2
(A−B)|,

|(C −A) + (C −B)| = |(C −A)− (C −B)|,
(C −A) · (C −B) = 0.

�

Proposition 1.3. The image of a circle under a dilatation is a circle. Furthermore, every dilatation preserves the
center of a circle.

Proof. Let S be the circle with center D and radius r. Then, for X ∈ S, we have

|τA(X)− τA(D)| = |X −D| = r,

|δC,s(X)− δC,s(D)| = |s(X −D)| = |s|r.
�

Theorem 1.4 (Nine-point circle theorem). Consider a triangle4ABC. LetA′, B′, C ′ be the midpoints ofA,B,C,
H the orthocenter, and

A′′ =
1

2
(A+H), B′′ =

1

2
(B +H), C ′′ =

1

2
(C +H).

Let D,E, F be the feet of the altitudes `A, `B , `C . Then, there exists a circle S that contains the nine points,
A′, B′, C ′, A′′, B′′, C ′′, D,E, F . Furthermore, the center of S is given by

N =
1

2
(H +K)

where K is the circumcenter of4ABC. This circle is called the Euler circle or the Feuerbach circle.

Proof. Let K be the circumcenter and S be the circumcircle (with center K and passing through A,B,C).
Let α = δG,− 1

2
, where G is the centroid. Note that α(A) = A′, α(B) = B′, α(C) = C ′. Since every dilatation

sends a circle to a circle, the image S ′ = α(S) is the circle passing through A′, B′, C ′ with center N := α(K).
Let `A be the altitude of A and `BC the perpendicular bisector of BC. Then, one can see that the image

α(`A) is `BC . LetH be the orthocenter, then α(H) = D. Note thatN = α(K) = α2(H) = 1
2 (K+H). SinceD

is the foot of `A and `A // `BC , we have |N −D| = |N −A′|. To see this, let X := K −A′. Since `A is parallel
to `BC , there exists t ∈ R such that H = D + tX . Since K = X + A′, N = 1

2 (H +K) = 1
2 (D + A′) + 1+t

2 X .
Thus, N is on the perpendicular bisector of DA′ which yields |N −D| = |N −A′|. This implies that D ∈ S ′.
Similarly, E,F ∈ S ′.

Let β = δH, 12
. Then, β(K) = G. Since every dilatation preserves the center of a circle, β maps S to S ′.

Since β(A) = A′′, β(B) = B′′, β(C) = C ′′, the proof is complete. �
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2. CAUCHY–SCHWARZ INEQUALITY (SEC. 3.4)

Theorem 2.1. For all X,Y ∈ R2, we have

X · Y ≤ |X||Y |.
The equality holds if and only if X = rY or Y = rX for some r.

Proof. If X = Y = O, the statement holds. Suppose Y 6= O. Define a function f(t) = |X − tY |2 for t ∈ R.
Since f(t) ≥ 0 for all t and

f(t) = |X|2 − 2tX · Y + t2|Y |2,
we have |X||Y | > X · Y .

If |X||Y | = X · Y , then there exists t0 such that f(t0) = 0. Thus, X = t0Y . The converse also holds. �

Theorem 2.2 (Triangle inequality). For any X,Y ∈ R2, we have

|X + Y | ≤ |X|+ |Y |, |X − Y | > |X| − |Y |.

Proof. It follows from the Cauchy–Schwarz inequality that

|X + Y |2 = |X|2 + 2X · Y + |Y |2 6 |X|2 + 2|X||Y |+ |Y |2 = (|X|+ |Y |)2.
�

Recall that the distance between X and Y is defined by

d(X,Y ) := |X − Y |.
The distance satisfies the following properties.

Proposition 2.3. Let X,Y, Z ∈ R2.
(1) d(X,Y ) = d(Y,X).
(2) d(X,Y ) > 0. The distance equals to zero if and only if X = Y .
(3) d(X,Z) ≤ d(X,Y ) + d(Y,Z).
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