MATH 403 LECTURE NOTE WEEK 10

DAESUNG KIM

1. CIRCLES (SEC. 3.3)

Definition 1.1. The circle with center D and radius r is the set of points X satisfying |X - D| = r.

Theorem 1.2 (Thales). Consider a triangle $\triangle ABC$. Let C' be the midpoint of A and B. Let S be the circle with center C' and radius $\frac{1}{2}|\overline{AB}|$. (That is, the line segment \overline{AB} is the diameter of S.) Then, $C \in S$ if and only if \overline{AC} is perpendicular to \overline{BC} .

Proof. The point C lies on S if and only if

$$|C - \frac{1}{2}(A + B)| = |\frac{1}{2}(A - B)|,$$

$$|(C - A) + (C - B)| = |(C - A) - (C - B)|,$$

$$(C - A) \cdot (C - B) = 0.$$

Proposition 1.3. *The image of a circle under a dilatation is a circle. Furthermore, every dilatation preserves the center of a circle.*

Proof. Let S be the circle with center D and radius r. Then, for $X \in S$, we have

$$|\tau_A(X) - \tau_A(D)| = |X - D| = r,$$

 $|\delta_{C,s}(X) - \delta_{C,s}(D)| = |s(X - D)| = |s|r.$

Theorem 1.4 (Nine-point circle theorem). *Consider a triangle* $\triangle ABC$. *Let* A', B', C' *be the midpoints of* A, B, C, H *the orthocenter, and*

$$A'' = \frac{1}{2}(A+H), \quad B'' = \frac{1}{2}(B+H), \quad C'' = \frac{1}{2}(C+H).$$

Let D, E, F be the feet of the altitudes ℓ_A, ℓ_B, ℓ_C . Then, there exists a circle S that contains the nine points, A', B', C', A'', B'', C'', D, E, F. Furthermore, the center of S is given by

$$N = \frac{1}{2}(H + K)$$

where *K* is the circumcenter of $\triangle ABC$. This circle is called the Euler circle or the Feuerbach circle.

Proof. Let *K* be the circumcenter and *S* be the circumcircle (with center *K* and passing through *A*, *B*, *C*). Let $\alpha = \delta_{G, -\frac{1}{2}}$, where *G* is the centroid. Note that $\alpha(A) = A'$, $\alpha(B) = B'$, $\alpha(C) = C'$. Since every dilatation sends a circle to a circle, the image $S' = \alpha(S)$ is the circle passing through A', B', C' with center $N := \alpha(K)$.

Let ℓ_A be the altitude of A and ℓ_{BC} the perpendicular bisector of \overline{BC} . Then, one can see that the image $\alpha(\ell_A)$ is ℓ_{BC} . Let H be the orthocenter, then $\alpha(H) = D$. Note that $N = \alpha(K) = \alpha^2(H) = \frac{1}{2}(K+H)$. Since D is the foot of ℓ_A and $\ell_A // \ell_{BC}$, we have |N - D| = |N - A'|. To see this, let X := K - A'. Since ℓ_A is parallel to ℓ_{BC} , there exists $t \in \mathbb{R}$ such that H = D + tX. Since K = X + A', $N = \frac{1}{2}(H + K) = \frac{1}{2}(D + A') + \frac{1+t}{2}X$. Thus, N is on the perpendicular bisector of $\overline{DA'}$ which yields |N - D| = |N - A'|. This implies that $D \in S'$. Similarly, $E, F \in S'$.

Let $\beta = \delta_{H,\frac{1}{2}}$. Then, $\beta(K) = G$. Since every dilatation preserves the center of a circle, β maps S to S'. Since $\beta(A) = A'', \beta(B) = B'', \beta(C) = C''$, the proof is complete.

2. CAUCHY-SCHWARZ INEQUALITY (SEC. 3.4)

Theorem 2.1. For all $X, Y \in \mathbb{R}^2$, we have

$$X \cdot Y \le |X||Y|.$$

The equality holds if and only if X = rY or Y = rX for some r.

Proof. If X = Y = O, the statement holds. Suppose $Y \neq O$. Define a function $f(t) = |X - tY|^2$ for $t \in \mathbb{R}$. Since $f(t) \ge 0$ for all t and

$$f(t) = |X|^2 - 2tX \cdot Y + t^2|Y|^2,$$

we have $|X||Y| \ge X \cdot Y$.

If $|X||Y| = X \cdot Y$, then there exists t_0 such that $f(t_0) = 0$. Thus, $X = t_0 Y$. The converse also holds.

Theorem 2.2 (Triangle inequality). *For any* $X, Y \in \mathbb{R}^2$ *, we have*

$$|X + Y| \le |X| + |Y|, \quad |X - Y| \ge |X| - |Y|.$$

Proof. It follows from the Cauchy-Schwarz inequality that

$$|X + Y|^{2} = |X|^{2} + 2X \cdot Y + |Y|^{2} \leq |X|^{2} + 2|X||Y| + |Y|^{2} = (|X| + |Y|)^{2}.$$

Recall that the distance between X and Y is defined by

$$d(X,Y) := |X - Y|.$$

The distance satisfies the following properties.

Proposition 2.3. Let $X, Y, Z \in \mathbb{R}^2$. (1) d(X,Y) = d(Y,X). (2) $d(X,Y) \ge 0$. The distance equals to zero if and only if X = Y.

(3) $d(X,Z) \le d(X,Y) + d(Y,Z)$.

References

[T] Philippe Tondeur, Vectors and Transformations in Plane Geometry, Publish Or Perish, Inc. 1993

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN *E-mail address:*daesungk@illinois.edu