MATH 403 FALL 2021: QUIZ 9 SOLUTION
 DATE: NOV 10, 2021

(a) (4 points) Write down the definition of an isometry.

Solution. An isometry is a distance preserving map. That is, a map $\alpha: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is an isometry if and only if

$$
d(\alpha(X), \alpha(Y))=d(X, Y) \quad \text { for all } X, Y .
$$

(b) (3 points) Let $\alpha: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by $\alpha((x, y))=(y+1,-x)$. Is the map α an isometry? Justify your answer.

Solution. Yes, it is an isometry. For $X=\left(x_{1}, x_{2}\right)$ and $Y=\left(y_{1}, y_{2}\right)$,
$|\alpha(X)-\alpha(Y)|=\left|\left(x_{2}+1,-x_{1}\right)-\left(y_{2}+1,-y_{1}\right)\right|=\sqrt{\left(x_{2}-y_{2}\right)^{2}+\left(y_{1}-x_{1}\right)^{2}}=|X-Y|$.
(c) (3 points) Is the map α linear? Justify your answer.

Solution. No, it is not linear since $\alpha(O) \neq O$.

