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1. CENTRAL REFLECTION (SEC. 4.4)

We have seen that if an isometry α has two distinct fixed points of α, then every point on the line `
determined by the fixed points is a fixed point. If there is another fixed point away from the line `, then α
should be the identity. Otherwise, we have seen that α is a reflection in `. That is, every isometry having
two distinct fixed points is either identity or a reflection. Now, we consider isometries with a unique fixed
point.

Recall that a central reflection σC is defined by σC(X) = 2C −X . We have seen that it is an isometry.

Lemma 1.1. Let α be an involutive isometry and X ∈ R2. Let M be the midpoint of X and α(X), then α(M) =M .

Proof. If X is a fixed point, the statement is true. Supppose X is not a fixed point. Since M is the midpoint,
|M − α(X)| = |M −X|. Since α is an involutive isometry,

|M − α(X)| = |α(M)−X| = |α(M)− α(X)| = |M −X|.

Thus, α(M) belongs to the perpendicular bisector of X and α(X). Since α maps `Xα(X) to itself and
M ∈ `Xα(X), α(M) belongs to the same line. Thus, α(M) belongs to the intersection of `Xα(X) and the
perpendicular bisector, which implies α(M) =M . �

Second Proof. It follows from α(aA+ bB) = aα(A) + bα(B) for a+ b = 1 that

α(M) = α((X + α(X)/2)) =
1

2
α(X) +

1

2
α(α(X)) =M.

�

Theorem 1.2. Let α be an involutive isometry with a unique fixed point C. Then α = σC .

Proof. Let X 6= C, then α(X) 6= X . By the lemma, the midpoint is a fixed point. Since C is the unique fixed
point, C = 1

2 (X + α(X)), which yields α = σC . �

Proposition 1.3. Let α be an isometry. Then, ασCα−1 = σα(C).

2. UNIQUE FIXED POINT (SEC. 4.5)

Theorem 2.1. Let α be an isometry with a unique fixed point P . Then, α = σ`1σ`2 for lines `1 and `2 with
P ∈ `1 ∩ `2.

Proof. Let X 6= P , then |X−P | = |α(X)−α(P )| = |α(X)−P |. Thus, P is on the perpendicular bisector ` of
X and α(X). Consider β = σ`α, then β(X) = X and β(P ) = P . It follows from the priveous theorem that
either β is the identity or a reflection. If β is the identity, then α = σ` so that P is not a unique fixed point,
which contradicts to the assumption. Thus, α is the composition of two reflections. �

Corollary 2.2. Let α be an isometry with at least one fixed point. Then, α is either a reflection or the composition of
two reflections.

Theorem 2.3. Every isometry can be written as the product of not more than three reflections.

Proof. It suffices to consider the case where there is no fixed point. Let P ∈ R2. Then Q = α(P ) 6= P . Let `
be the perpendicular bisector of PQ. Then, σ`α has at least one fixed point P . Thus, σ`α is either a reflection
or the composition of two reflection. �
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3. COMPOSITIONS OF INVOLUTIONS (SEC. 4.6)

Let α, β be involutions. Is the composition also an involution? That is,

(αβ)2 = αβαβ = Id?

This is equivalent to αβ = βα. We say two maps α, β commute if αβ = αβ. We consider the conditions
when involutions commute. In particular, we consider reflections and central reflections.

Proposition 3.1. Let σ1, σ2 be reflections in distinct lines `1, `2. Then the maps commute if and only if the lines are
perpendicular. In this case, σ1σ2 = σC where C ∈ `1 ∩ `2.

Proof. We have seen that σ1σ2σ1 = σσ1(`2). Thus, σ1σ2 = σ2σ1 if and only if σ1(`2) = `2. Since `1 6= `2, it is
equivalent to `1 ⊥ `2 as desired. The second assertion is an exercise. �

Proposition 3.2. A central reflection σC and a reflection σ` commute if and only if C ∈ `.

Proof. Since σ`σCσ` = σσ`(C), they commute if and only if σ`(C) = C. �

4. TRANSLATIONS

Theorem 4.1. The composition of two reflections in parallel lines is a translation.

Proof. Let σ1, σ2 be reflections in lines `1 // `2. Let ` be a line perpendicular to `1, `2 andN ∈ `∩`1,M ∈ `∩`2.
We have seen that σ1σ` = σN and σ`σ2 = σM . Thus,

σ1σ2 = σNσM = τA, A = 2(N −M).

�

Remark 4.2. It follows from the proof that every translation can be written as the product ot two parallel reflections,
or the product of central reflections. Consider the product of three parallel reflections. Then, it is the product of a
translation and a reflection, which is another reflection in a parallel line.

5. ROTATIONS

We consider a rotation with center C ∈ R2 through the oriented angle θ ∈ (−π, π]. We define a map ρC,θ
by ρC,θ(X) = X ′ with

|X − C| = |X ′ − C|, ](X − C,X ′ − C) = θ.

Theorem 5.1. A rotation is an isometry.

Proof. Let α = ρC,θ, X,Y ∈ R2, and X ′ = α(X), Y ′ = α(Y ). Then,

|X ′ − Y ′|2 = |(X ′ − C)− (Y ′ − C)|2

= |X ′ − C|2 − 2|X ′ − C||Y ′ − C| cos](X ′ − C, Y ′ − C) + |Y ′ − C|2

= |X − C|2 − 2|X − C||Y − C| cos](X − C, Y − C) + |Y − C|2

= |X − Y |2.
�

We define the oriented angle between two lines `AB , `CD by ](A − B,C − D). We use the notation
](`AB , `CD).

Theorem 5.2. Let `1, `2 be lines with C ∈ `1 ∩ `2 and θ = 2](`1, `2). Then, ρC,θ = σ`2σ`1 .

Proof. Let α = ρC,θσ`1σ`2 . Note that C is a fixed point of α. Consider a circle S with center C and radius 1.
Let N ∈ S ∩ `1 and M ∈ S ∩ `2. Let L = σ`2(N). We claim that M,L are fixed point of α. (Exercise) Since α
fixes three non-collinear points, it should be the identity, which completes the proof. �

Theorem 5.3. Let `i, i = 1, 2, 3 be concurrent lines with concurrent point C. Then, σ1σ2σ3 is a reflection in a line
`4 passing through C.

Theorem 5.4. (1) An isometry with a unique fixed point C is a rotation with center C.
(2) An isometry with at least one fixed point is one of the identity, a rotation, and a reflection.
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Theorem 5.5. Let α = ρC,θ be such that α 6= Id and α(`) = `. Then, α = σC .

Proof. Exercise. �

Theorem 5.6. The composition of two rotations is either a rotation or a translation.

6. GLIDE REFLECTIONS

A glide reflection in a direction T ∈ R2 \ {O} is a composition τTσ`, where ` is a line parallel to T .

Proposition 6.1. Let T be a nonzero vector and ` a line. Then ` is parallel to T if and only if τTσ` = σ`τT .

Proof. Since τTσ`τ−1T = στT (`), τT and σ` commute if and only if τT (`) = `. �

Note that a glide reflection has no fixed point.

7. CLASSIFICATION OF ISOMETRIES

Theorem 7.1. Every isometry is either a reflection, or a translation, or a rotation, or a glide reflection.
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