MATH 403 LECTURE NOTE WEEK 13

DAESUNG KIM

1. Reflection (Sec. 4.3)

Let ℓ be a line in the plane. We consider the reflection map σ_{ℓ} in a line ℓ . If *P* is on ℓ , then *P* should be a fixed point of the map. Suppose $P \notin \ell$ and σ_{ℓ} maps *P* to *P'*. Then, ℓ is the perpendicular bisector of the line segment $\overline{PP'}$.

Suppose $O \in \ell$ and $Y \in \ell$ with |Y| = 1. For any $X \in \mathbb{R}^2$, we have

$$\sigma_{\ell}(X) = X + 2(\operatorname{Proj}_{Y} X - X) = 2\operatorname{Proj}_{Y} X - X = 2(X \cdot Y)Y - X.$$

For general line ℓ (not necessarily passing through the origin), we find a vector R such that $\tau_R(\ell)$ passes through O. Then, we will see that

$$\sigma_{\ell} = \tau_R^{-1} \sigma_{\tau_R(\ell)} \tau_R$$

In what follows, we focus on the case where $O \in \ell$.

Definition 1.1. A bijection map α is called an involution if it is not the identity map and $\alpha^2 = \text{Id.}$

Proposition 1.2. *Every reflection is an involutive isometry.*

Proof. It suffices to consider a line ℓ with $O, Y \in \ell$ and |Y| = 1. Consider a parallelogram generated by X and $\sigma_{\ell}(X)$. Since the diagonals of the parallelogram are perpendicular, it is a rhombus. This implies that $|\sigma_{\ell}(X)| = |X|$ for all X. For $X, Z \in \mathbb{R}^2$, we have

$$\sigma_{\ell}(X) - \sigma_{\ell}(Z)| = |2(X \cdot Y)Y - X - 2(Z \cdot Y)Y + Z|$$
$$= |2\operatorname{Proj}_{Y}(X - Z) - (X - Z)|$$
$$= |X - Z|.$$

Thus, σ_{ℓ} is an isometry. We also have

$$\sigma_{\ell}^{2}(X) = \sigma_{\ell}(2(X \cdot Y)Y - X)$$

= 2[(2(X \cdot Y)Y - X) \cdot Y]Y - (2(X \cdot Y)Y - X)
= 2(X \cdot Y)Y - (2(X \cdot Y)Y - X)
= X

for all *X*. Thus, σ_{ℓ} is an involution.

Theorem 1.3. Let α be an isometry with $\alpha \neq \text{Id.}$ Suppose there exist two distinct fixed points P, Q. Then, α is a reflection in the line ℓ_{PQ} .

Proof. If $R \in \ell_{PQ}$, then we have seen that $\alpha(R) = R$. Let $R \notin \ell_{PQ}$. If $\alpha(R) = R$, then α should be the identity map. Let $S = \alpha(R) \neq R$. Since α is an isometry, we have

$$|P - S| = |\alpha(P) - \alpha(R)| = |P - R|, |Q - S| = |\alpha(Q) - \alpha(R)| = |Q - R|.$$

This means that *P* and *Q* are on the perpendicular bisector of \overline{RS} . That is, $S = \alpha(R) = \sigma_{\ell_{PQ}}(R)$ for all *R* as desired.

Corollary 1.4. Let α be an isometry. Suppose that α is an involution and fixes a line ℓ . Then, $\alpha = \sigma_{\ell}$.

Proposition 1.5. Let α be an isometry, then $\sigma_{\alpha(\ell)} = \alpha \sigma_{\ell} \alpha^{-1}$.

Proof. It suffices to show $\alpha \sigma_{\ell} \alpha^{-1}$ is an involution and fixes $\alpha(\ell)$. (Exercise)

References

[T] Philippe Tondeur, Vectors and Transformations in Plane Geometry, Publish Or Perish, Inc. 1993

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN *E-mail address*:daesungk@illinois.edu