MATH 403 LECTURE NOTE
 WEEK 13

DAESUNG KIM

1. Reflection (Sec. 4.3)

Let ℓ be a line in the plane. We consider the reflection map σ_{ℓ} in a line ℓ. If P is on ℓ, then P should be a fixed point of the map. Suppose $P \notin \ell$ and σ_{ℓ} maps P to P^{\prime}. Then, ℓ is the perpendicular bisector of the line segment $\overline{P P^{\prime}}$.

Suppose $O \in \ell$ and $Y \in \ell$ with $|Y|=1$. For any $X \in \mathbb{R}^{2}$, we have

$$
\sigma_{\ell}(X)=X+2\left(\operatorname{Proj}_{Y} X-X\right)=2 \operatorname{Proj}_{Y} X-X=2(X \cdot Y) Y-X
$$

For general line ℓ (not necessarily passing through the origin), we find a vector R such that $\tau_{R}(\ell)$ passes through O. Then, we will see that

$$
\sigma_{\ell}=\tau_{R}^{-1} \sigma_{\tau_{R}(\ell)} \tau_{R}
$$

In what follows, we focus on the case where $O \in \ell$.
Definition 1.1. A bijection map α is called an involution if it is not the identity map and $\alpha^{2}=\mathrm{Id}$.
Proposition 1.2. Every reflection is an involutive isometry.
Proof. It suffices to consider a line ℓ with $O, Y \in \ell$ and $|Y|=1$. Consider a parallelogram generated by X and $\sigma_{\ell}(X)$. Since the diagonals of the parallelogram are perpendicular, it is a rhombus. This implies that $\left|\sigma_{\ell}(X)\right|=|X|$ for all X. For $X, Z \in \mathbb{R}^{2}$, we have

$$
\begin{aligned}
\left|\sigma_{\ell}(X)-\sigma_{\ell}(Z)\right| & =|2(X \cdot Y) Y-X-2(Z \cdot Y) Y+Z| \\
& =\left|2 \operatorname{Proj}_{Y}(X-Z)-(X-Z)\right| \\
& =|X-Z|
\end{aligned}
$$

Thus, σ_{ℓ} is an isometry. We also have

$$
\begin{aligned}
\sigma_{\ell}^{2}(X) & =\sigma_{\ell}(2(X \cdot Y) Y-X) \\
& =2[(2(X \cdot Y) Y-X) \cdot Y] Y-(2(X \cdot Y) Y-X) \\
& =2(X \cdot Y) Y-(2(X \cdot Y) Y-X) \\
& =X
\end{aligned}
$$

for all X. Thus, σ_{ℓ} is an involution.
Theorem 1.3. Let α be an isometry with $\alpha \neq \mathrm{Id}$. Suppose there exist two distinct fixed points P, Q. Then, α is a reflection in the line $\ell_{P Q}$.
Proof. If $R \in \ell_{P Q}$, then we have seen that $\alpha(R)=R$. Let $R \notin \ell_{P Q}$. If $\alpha(R)=R$, then α should be the identity map. Let $S=\alpha(R) \neq R$. Since α is an isometry, we have

$$
\begin{aligned}
|P-S| & =|\alpha(P)-\alpha(R)|=|P-R| \\
|Q-S| & =|\alpha(Q)-\alpha(R)|=|Q-R|
\end{aligned}
$$

This means that P and Q are on the perpendicular bisector of $\overline{R S}$. That is, $S=\alpha(R)=\sigma_{\ell_{P Q}}(R)$ for all R as desired.

Corollary 1.4. Let α be an isometry. Suppose that α is an involution and fixes a line ℓ. Then, $\alpha=\sigma_{\ell}$.
Proposition 1.5. Let α be an isometry, then $\sigma_{\alpha(\ell)}=\alpha \sigma_{\ell} \alpha^{-1}$.
Proof. It suffices to show $\alpha \sigma_{\ell} \alpha^{-1}$ is an involution and fixes $\alpha(\ell)$. (Exercise)

References

[T] Philippe Tondeur, Vectors and Transformations in Plane Geometry, Publish Or Perish, Inc. 1993

Department of Mathematics, University of Illinois at Urbana-Champaign
E-mail address:daesungk@illinois.edu

