MATH 403 LECTURE NOTE WEEK 3

DAESUNG KIM

1. BARICENTRIC COORDINATES (SEC 1.11)

Theorem 1.1. Let $A, B, C \in \mathbb{R}^2$ be points which do not lie on a line. For every P in the plane, there is a unique representation

$$P = aA + bB + cC$$

with a + b + c = 1.

Proof. Subtracting *A* on the both sides, we have

$$P - A = (aA + bB + cC) - (aA + bA + cA) = b(B - A) + c(C - A).$$

Here, I used the assumption that a + b + c = 1.

Recall that if X and Y are vectors such that $\ell_{OX} \neq \ell_{OY}$, then for every $Z \in \mathbb{R}^2$, there is a unique representation Z = rX + sY.

Here, we assume that A, B, C are not on the same line. In other words, if we let X = B - A and Y = C - A, then $\ell_{OX} \neq \ell_{OY}$. Thus, there is a unique representation for Z := P - A in terms of X and Y. That is,

$$P - A = b(B - A) + c(C - A)$$

for some $b, c \in \mathbb{R}$. Thus, we have a unique representation

$$P = (1 - b - c)A + bB + cC = aA + bB + cC.$$

Definition 1.2. Let $A, B, C \in \mathbb{R}^2$ be points which do not lie on a line. The barycentric coordinate of P with respect to A, B, C is defined by (a, b, c) such that $a, b, c \in \mathbb{R}$ with a + b + c = 1 and

$$P = aA + bB + cC.$$

Remark 1. Let $A, B, C \in \mathbb{R}^2$ be points which do not lie on a line. Every point P can be also written as

$$P = \frac{a}{a+b+c}A + \frac{b}{a+b+c}B + \frac{c}{a+b+c}C.$$

Such a, b, c are also unique. Then, P is the centroid of mass-points (a, A), (b, B) and (c, C).

2. THEOREM OF CEVA (SEC 1.12)

Let $A, B, C \in \mathbb{R}^2$ form a triangle and a, b, c > 0. Let

$$A' = \frac{bB + cC}{b + c}, \quad B' = \frac{cC + aA}{c + a}, \quad C' = \frac{aA + bB}{a + b}.$$

Then, we have seen that the lines $\ell_{AA'}$, $\ell_{BB'}$, and $\ell_{CC'}$ are concurrent and

$$\ell_{AA'} \cap \ell_{BB'} \cap \ell_{CC'} = \{G\}$$

where G is the centroid of (a, A), (b, B), (c, C).

Theorem 2.1. Let $A, B, C \in \mathbb{R}^2$ form a triangle. Let A', B', C' be points on the sides $\overline{BC}, \overline{CA}, \overline{AB}$ respectively. Assume that A' is distinct from B, C, B' from C, A, and C' from A, B. Then, $\ell_{AA'}, \ell_{BB'}, \ell_{CC'}$ are concurrent if and only if

(1)
$$\frac{A'-B}{A'-C} \cdot \frac{B'-C}{B'-A} \cdot \frac{C'-A}{C'-B} = -1.$$

Proof. Suppose that $\ell_{AA'}$, $\ell_{BB'}$, $\ell_{CC'}$ are concurrent in a point *G*. Then, *G* can be written as G = aA + bB + cC for some $a, b, c \in \mathbb{R}$ with a + b + c = 1. Then, we have

$$G - A = b(B - A) + c(C - A).$$

Since *G* lies on the line $\ell_{AA'}$, there exists $r \in \mathbb{R}$ such that G - A = r(A' - A), that is,

$$A' - A = rb(B - A) + rc(C - A).$$

Since A' is on \overline{BC} and distinct from B and C, we know rb + rc = 1 and $rb \neq 0$, $rc \neq 0$. Therefore, we have

$$A' = \frac{b}{b+c}B + \frac{c}{b+c}C, \quad \frac{A'-B}{A'-C} = -\frac{c}{b}$$

Similarly, we get

$$B' = \frac{c}{c+a}C + \frac{a}{c+a}A, \quad \frac{B'-C}{B'-A} = -\frac{a}{c}$$
$$C' = \frac{a}{a+b}A + \frac{b}{a+b}B, \quad \frac{C'-A}{C'-B} = -\frac{b}{a}.$$

Thus, the equation (1) holds.

Suppose that the equation (1) holds. Since A' is on the side \overline{BC} , there exists $t \in \mathbb{R}$ such that A' = (1-t)B + tC. Since A' is distinct from B and C, we know that $t \in (0, 1)$. Let b = 1 and c = t/(1-t), then

$$A' = \frac{b}{b+c}B + \frac{c}{b+c}C, \quad \frac{A'-B}{A'-C} = -\frac{c}{b}$$

Similarly, B' can be written as B' = (1 - s)C + sA for some $s \in (0, 1)$. Let a = st/((1 - s)(1 - t)), then

$$B' = \frac{c}{c+a}C + \frac{a}{c+a}A, \quad \frac{B'-C}{B'-A} = -\frac{a}{c},$$

By (1), we have $C' - A = -\frac{b}{a}(C' - B)$, which implies

$$C' = \frac{a}{a+b}A + \frac{b}{a+b}B.$$

Then, $\ell_{AA'}$, $\ell_{BB'}$, and $\ell_{CC'}$ are concurrent and

$$\ell_{AA'} \cap \ell_{BB'} \cap \ell_{CC'} = \{G\}$$

where G is the centroid of (a, A), (b, B), (c, C).

Remark 2. Theorem of Ceva holds for $A' \in \ell_{BC}$, $B' \in \ell_{CA}$, $C' \in \ell_{AB}$ as long as A', B', C' are distinct from A, B, C.

Theorem 2.2. Let $A, B, C \in \mathbb{R}^2$ form a triangle and G be a point inside $\triangle ABC$, that is, G = aA + bB + cC with a + b + c = 1 and $a, b, c \in (0, 1)$. Then, we have

$$|\triangle GBC| : |\triangle GCA| : |\triangle GAB| = a : b : c.$$

Here, $|\triangle PQR|$ *denotes the area of* $\triangle PQR$ *.*

Proof. The result follows from

$$b: a = |\triangle CAC'| : |\triangle CC'B|$$

= $|\triangle GAC'| : |\triangle GC'B|$
= $|\triangle CAC'| - |\triangle GAC'| : |\triangle CC'B| - |\triangle GC'B|$
= $|\triangle CAG| : |\triangle CGB|$

References

[T] Philippe Tondeur, Vectors and Transformations in Plane Geometry, Publish Or Perish, Inc. 1993

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN *E-mail address:*daesungk@illinois.edu