MATH 403 LECTURE NOTE
 WEEK 3

DAESUNG KIM

1. Baricentric coordinates (SEC 1.11)

Theorem 1.1. Let $A, B, C \in \mathbb{R}^{2}$ be points which do not lie on a line. For every P in the plane, there is a unique representation

$$
P=a A+b B+c C
$$

with $a+b+c=1$.
Proof. Subtracting A on the both sides, we have

$$
P-A=(a A+b B+c C)-(a A+b A+c A)=b(B-A)+c(C-A) .
$$

Here, I used the assumption that $a+b+c=1$.
Recall that if X and Y are vectors such that $\ell_{O X} \neq \ell_{O Y}$, then for every $Z \in \mathbb{R}^{2}$, there is a unique representation $Z=r X+s Y$.

Here, we assume that A, B, C are not on the same line. In other words, if we let $X=B-A$ and $Y=C-A$, then $\ell_{O X} \neq \ell_{O Y}$. Thus, there is a unique representation for $Z:=P-A$ in terms of X and Y. That is,

$$
P-A=b(B-A)+c(C-A)
$$

for some $b, c \in \mathbb{R}$. Thus, we have a unique representation

$$
P=(1-b-c) A+b B+c C=a A+b B+c C
$$

Definition 1.2. Let $A, B, C \in \mathbb{R}^{2}$ be points which do not lie on a line. The barycentric coordinate of P with respect to A, B, C is defined by (a, b, c) such that $a, b, c \in \mathbb{R}$ with $a+b+c=1$ and

$$
P=a A+b B+c C .
$$

Remark 1. Let $A, B, C \in \mathbb{R}^{2}$ be points which do not lie on a line. Every point P can be also written as

$$
P=\frac{a}{a+b+c} A+\frac{b}{a+b+c} B+\frac{c}{a+b+c} C .
$$

Such a, b, c are also unique. Then, P is the centroid of mass-points $(a, A),(b, B)$ and (c, C).

2. Theorem of Ceva (SEC 1.12)

Let $A, B, C \in \mathbb{R}^{2}$ form a triangle and $a, b, c>0$. Let

$$
A^{\prime}=\frac{b B+c C}{b+c}, \quad B^{\prime}=\frac{c C+a A}{c+a}, \quad C^{\prime}=\frac{a A+b B}{a+b} .
$$

Then, we have seen that the lines $\ell_{A A^{\prime}}, \ell_{B B^{\prime}}$, and $\ell_{C C^{\prime}}$ are concurrent and

$$
\ell_{A A^{\prime}} \cap \ell_{B B^{\prime}} \cap \ell_{C C^{\prime}}=\{G\}
$$

where G is the centroid of $(a, A),(b, B),(c, C)$.

Theorem 2.1. Let $A, B, C \in \mathbb{R}^{2}$ form a triangle. Let $A^{\prime}, B^{\prime}, C^{\prime}$ be points on the sides $\overline{B C}, \overline{C A}, \overline{A B}$ respectively. Assume that A^{\prime} is distinct from B, C, B^{\prime} from C, A, and C^{\prime} from A, B. Then, $\ell_{A A^{\prime}}, \ell_{B B^{\prime}}, \ell_{C C^{\prime}}$ are concurrent if and only if

$$
\begin{equation*}
\frac{A^{\prime}-B}{A^{\prime}-C} \cdot \frac{B^{\prime}-C}{B^{\prime}-A} \cdot \frac{C^{\prime}-A}{C^{\prime}-B}=-1 \tag{1}
\end{equation*}
$$

Proof. Suppose that $\ell_{A A^{\prime}}, \ell_{B B^{\prime}}, \ell_{C C^{\prime}}$ are concurrent in a point G. Then, G can be written as $G=a A+b B+c C$ for some $a, b, c \in \mathbb{R}$ with $a+b+c=1$. Then, we have

$$
G-A=b(B-A)+c(C-A)
$$

Since G lies on the line $\ell_{A A^{\prime}}$, there exists $r \in \mathbb{R}$ such that $G-A=r\left(A^{\prime}-A\right)$, that is,

$$
A^{\prime}-A=r b(B-A)+r c(C-A)
$$

Since A^{\prime} is on $\overline{B C}$ and distinct from B and C, we know $r b+r c=1$ and $r b \neq 0, r c \neq 0$. Therefore, we have

$$
A^{\prime}=\frac{b}{b+c} B+\frac{c}{b+c} C, \quad \frac{A^{\prime}-B}{A^{\prime}-C}=-\frac{c}{b} .
$$

Similarly, we get

$$
\begin{aligned}
B^{\prime} & =\frac{c}{c+a} C+\frac{a}{c+a} A,
\end{aligned} \frac{\frac{B^{\prime}-C}{B^{\prime}-A}=-\frac{a}{c}}{C^{\prime}}=\frac{a}{a+b} A+\frac{b}{a+b} B, \quad \frac{C^{\prime}-A}{C^{\prime}-B}=-\frac{b}{a} .
$$

Thus, the equation (1) holds.
Suppose that the equation (1) holds. Since A^{\prime} is on the side $\overline{B C}$, there exists $t \in \mathbb{R}$ such that $A^{\prime}=$ $(1-t) B+t C$. Since A^{\prime} is distinct from B and C, we know that $t \in(0,1)$. Let $b=1$ and $c=t /(1-t)$, then

$$
A^{\prime}=\frac{b}{b+c} B+\frac{c}{b+c} C, \quad \frac{A^{\prime}-B}{A^{\prime}-C}=-\frac{c}{b}
$$

Similarly, B^{\prime} can be written as $B^{\prime}=(1-s) C+s A$ for some $s \in(0,1)$. Let $a=s t /((1-s)(1-t))$, then

$$
B^{\prime}=\frac{c}{c+a} C+\frac{a}{c+a} A, \quad \frac{B^{\prime}-C}{B^{\prime}-A}=-\frac{a}{c}
$$

By (1), we have $C^{\prime}-A=-\frac{b}{a}\left(C^{\prime}-B\right)$, which implies

$$
C^{\prime}=\frac{a}{a+b} A+\frac{b}{a+b} B
$$

Then, $\ell_{A A^{\prime}}, \ell_{B B^{\prime}}$, and $\ell_{C C^{\prime}}$ are concurrent and

$$
\ell_{A A^{\prime}} \cap \ell_{B B^{\prime}} \cap \ell_{C C^{\prime}}=\{G\}
$$

where G is the centroid of $(a, A),(b, B),(c, C)$.
Remark 2. Theorem of Ceva holds for $A^{\prime} \in \ell_{B C}, B^{\prime} \in \ell_{C A}, C^{\prime} \in \ell_{A B}$ as long as $A^{\prime}, B^{\prime}, C^{\prime}$ are distinct from A, B, C.

Theorem 2.2. Let $A, B, C \in \mathbb{R}^{2}$ form a triangle and G be a point inside $\triangle A B C$, that is, $G=a A+b B+c C$ with $a+b+c=1$ and $a, b, c \in(0,1)$. Then, we have

$$
|\triangle G B C|:|\triangle G C A|:|\triangle G A B|=a: b: c
$$

Here, $|\triangle P Q R|$ denotes the area of $\triangle P Q R$.
Proof. The result follows from

$$
\begin{aligned}
b: a & =\left|\triangle C A C^{\prime}\right|:\left|\triangle C C^{\prime} B\right| \\
& =\left|\triangle G A C^{\prime}\right|:\left|\triangle G C^{\prime} B\right| \\
& =\left|\triangle C A C^{\prime}\right|-\left|\triangle G A C^{\prime}\right|:\left|\triangle C C^{\prime} B\right|-\left|\triangle G C^{\prime} B\right| \\
& =|\triangle C A G|:|\triangle C G B|
\end{aligned}
$$

and symmetry.

References

[T] Philippe Tondeur, Vectors and Transformations in Plane Geometry, Publish Or Perish, Inc. 1993

Department of Mathematics, University of Illinois at Urbana-Champaign
E-mail address:daesungk@illinois.edu

