Math 403: Euclidean Geometry Midterm 2 Solution, Fall 2021

Date: October 20, 2021

1. (24 points) Circle True or False. Do not justify your answer.
(a) TRUE False Let $\alpha, \beta: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be maps. If $\alpha \circ \beta$ is one-to-one, then β is one-to-one.

Solution: Suppose $\beta(X)=\beta(Y)$, then $\alpha \beta(X)=\alpha \beta(Y)$. Since $\alpha \beta$ is one-to-one, we have $X=Y$. Thus, β is also one-to-one.
(b) True FALSE A translation and a central dilatation commute.

Solution: Let $A \neq O$, then $\tau_{A} \delta_{2}(A)=3 A$ and $\delta_{2} \tau_{A}(A)=2 A$. Thus, $\tau_{A} \delta_{2} \neq \delta_{2} \tau_{A}$.
(c) TRUE False Every central dilatation has at least one fixed point.

Solution: For any $C \in \mathbb{R}^{2}$ and $r \in \mathbb{R} \backslash\{0\}$, we have $\delta_{C, r}(C)=C$.
(d) True FALSE For any two lines ℓ_{1}, ℓ_{2}, there exists a dilatation α such that $\alpha\left(\ell_{1}\right)=\ell_{2}$.

Solution: Every dilatation maps a line to a parallel line. If ℓ_{1} is not parallel to ℓ_{2}, then there is no such map.
(e) True FALSE For any $C, D \in \mathbb{R}^{2}$ and $r, s \in \mathbb{R} \backslash\{0\}$, the composition $\delta_{C, r} \circ \delta_{D, s}$ is a central dilatation.

Solution: If $s=1 / r$, then

$$
\delta_{C, r} \delta_{D, 1 / r}(X)=(1-r) C+r\left((1-1 / r) D+\frac{1}{r} X\right)=(1-r)(C-D)+X=\tau_{(1-r)(C-D)}(X)
$$

(f) TRUE False Let G be a group. A subset H of G is a group if and only if $a b^{-1} \in H$ for all $a, b \in H$.

Solution: This was covered in class.
2. (20 points) Give definitions of the following.
(a) The conjugate of α by μ where $\alpha, \mu: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$.

Solution: The conjugate $\bar{\alpha}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is defined by $\bar{\alpha}=\mu \alpha \mu^{-1}$.
(b) The distance between X and Y, where $X, Y \in \mathbb{R}^{2}$.

Solution: The distance is defined by $d(X, Y)=|X-Y|=\sqrt{(X-Y) \cdot(X-Y)}$, where \cdot is the scalar product.
(c) An isomorphism between two groups G and H.

Solution: An isomorphism is a map $\varphi: G \rightarrow H$ that is a bijection and a homomorphism.
(d) A map is onto.

Solution: Let A, B be sets. A map $f: A \rightarrow B$ is onto if for every $b \in B$ there exists $a \in A$ such that $f(a)=b$.
3. (10 points) Let $C, D \in \mathbb{R}^{2}$. Show that $\sigma_{C} \circ \sigma_{D}$ has a fixed point if and only if $C=D$.

Solution: Suppose $\sigma_{C} \sigma_{D}$ has a fixed point. That is, there exists $X \in \mathbb{R}^{2}$ such that $\sigma_{C} \sigma_{D}(X)=X$. Then,

$$
\sigma_{C} \sigma_{D}(X)=2 C-(2 D-X)=2(C-D)+X=X
$$

which implies $C-D=0$. Thus, $C=D$.
Suppose $C=D$. Since the inverse of σ_{C} is σ_{D}. Thus, $\sigma_{C} \sigma_{D}=\sigma_{C}^{2}=I d$ and so every point is a fixed point.
4. (10 points) Let $A \in \mathbb{R}^{2}$. Answer only one of the following questions.
(a) Is $G=\left\{\tau_{m A}: m \in \mathbb{N}\right\}$ with composition a group? Justify your answer.

Solution: Suppose $A \neq O$. Since the inverse of τ_{A} is $\tau_{-A} \notin G, G$ is not a group. If $A=O$, then $G=\{\mathrm{Id}\}$. Thus, G is a group.
(b) Is $H=\left\{\delta_{A, r}: r \in \mathbb{R}, r>0\right\}$ with composition a group? Justify your answer.

Solution: It suffices to show that $\alpha \beta^{-1} \in H$ for all $\alpha, \beta \in H$. Let $\alpha=\delta_{A, r}$ and $\beta=\delta_{A, s}$ for $r, s \in \mathbb{R}$ with $r, s>0$. Then,

$$
\alpha \beta^{-1}=\delta_{A, r}\left(\delta_{A, s}\right)^{-1}=\delta_{A, r} \delta_{A, 1 / s}=\delta_{A, r / s}
$$

Since $r / s \in \mathbb{R}$ and $r / s>0$, we have $\alpha \beta^{-1}=\delta_{A, r / s} \in H$ as desired.
5. Let α be a dilatation and $A, B \in \mathbb{R}^{2}$ with $A \neq B$.
(a) (10 points) Show that $\alpha\left(\ell_{A B}\right)=\ell_{\alpha(A) \alpha(B)}$.
(b) (10 points) Show that $\ell_{A B}$ is parallel to $\ell_{\alpha(A) \alpha(B)}$.

Solution:

(a) Suppose $X \in \alpha\left(\ell_{A B}\right)$, then there exists $Y \in \ell_{A B}$ such that $X=\alpha(Y)$. We know that Y can be written as $Y=(1-r) A+r B$. If $\alpha=\tau_{R}$ is a translation, then

$$
X=\alpha(Y)=\tau_{R}((1-r) A+r B)=(1-r) \alpha(A)+r \alpha(B) \in \ell_{\alpha(A) \alpha(B)} .
$$

If $\alpha=\delta_{C, s}$ is a central dilatation, then

$$
X=\alpha(Y)=\delta_{C, s}((1-r) A+r B)=(1-r) \alpha(A)+r \alpha(B) \in \ell_{\alpha(A) \alpha(B)}
$$

Thus, $\alpha\left(\ell_{A B}\right) \subseteq \ell_{\alpha(A) \alpha(B)}$.
Suppose $X \in \ell_{\alpha(A) \alpha(B)}$, then there exists r such that $X=(1-r) \alpha(A)+r \alpha(B)$. Note that $\alpha(A) \neq \alpha(B)$ because α is bijective and $A \neq B$. By the same calculation as above for translations and central dilatations, we have

$$
X=\alpha((1-r) A+r B) .
$$

Since $(1-r) A+r B \in \ell_{A B}$, we have $X \in \alpha\left(\ell_{A B}\right)$. We conclude that $\ell_{\alpha(A) \alpha(B)}=\alpha\left(\ell_{A B}\right)$.
(b) If $\alpha=\tau_{R}$ is a translation, then

$$
\alpha(X)-\alpha(Y)=(R+X)-(R+Y)=X-Y .
$$

If $\alpha=\delta_{C, s}$ is a central dilatation, then

$$
\alpha(X)-\alpha(Y)=((1-s) C+s X)-((1-s) C+s Y)=s(X-Y) .
$$

Thus, if α is a dilatation, then $\alpha(X)-\alpha(Y)=t(X-Y)$ for some t, which implies that two lines are parallel.
6. Let $\alpha=\delta_{A, 2}$. Suppose A, B, C form a triangle and G is the centroid.
(a) (8 points) Show that $B, G, C, \alpha(G)$ form a parallelogram.
(b) (8 points) Let $A^{\prime}=\frac{1}{2}(B+C)$. Using (a), show that A, G, A^{\prime} are collinear.

Solution:

(a) Since $G=\frac{1}{3}(A+B+C)$, we have

$$
G+\alpha(G)=G+((1-2) A+2 G)=3 G-A=B+C
$$

which proves (a).
(b) Since $\alpha(G)=(1-2) A+2 G, A, G, \alpha(G)$ are collinear. Since the midpoint of G and $\alpha(G)$ is A^{\prime}, we conclude that A, G, A^{\prime} are collinear.

