Math 403: Euclidean Geometry

Midterm 3 Solution, Fall 2021

Date: November 17, 2021

1. (24 points) Circle True or False. Do not justify your answer.

(a) True **FALSE** Let $X, Y \in \mathbb{R}^2$. If $X \cdot Y = 0$, then X = O or Y = O.

Solution: If X = (1, 0) and Y = (0, 1), then $X \cdot Y = 0$.

(b) **TRUE** False Let $X, Y, Z \in \mathbb{R}^2$. If $X \cdot Y = Y \cdot Z = Z \cdot X = 0$, then at least one of X, Y, Z is zero.

Solution: Suppose $Y, Z \neq O$. Since $Y \cdot Z = 0, O, Y, Z$ are not collinear. Thus, there exists $a, b \in \mathbb{R}$ such that X = aY + bZ. Then,

$$X \cdot X = (aY + bZ) \cdot X = aX \cdot Y + bZ \cdot X = 0.$$

(c) True **FALSE** There exist $X, Y \in \mathbb{R}^2$ such that |X| = 4, |X - Y| = 5, and |Y| = 10.

Solution: By the triangle inequality, we have $10 = |Y| \le |X| + |X - Y| = 9$, which is a contradiction.

(d) **TRUE** False For any non-collinear distinct points $A, B, C \in \mathbb{R}^2$, there exists a circle S such that $A, B, C \in S$.

Solution: If *K* is the circumcenter, then |K - A| = |K - B| = |K - C| so there exists such a circle.

(e) True **FALSE** Every isometry maps a line to a parallel line.

Solution: No. If $\alpha((x, y)) = (y, x)$, then it is an isometry and maps the line x = 0 to the line y = 0.

(f) **TRUE** False Let A, B, C form a triangle, H the orthocenter, K the circumcenter, and D, E, F be the feet of the altitudes of A, B, C. Then, the nine point circle theorem tells us that if N is the midpoint of H and K, then

$$|D - N| = |E - N| = |F - N|.$$

Solution: The circle in the nine point circle theorem has the center at N and contains the feet D, E, F.

- 2. (25 points) Give definitions of the following.
 - (a) Rhombus

Solution: A rhombus is a parallelogram with sides of equal length.

(b) Altitudes of a triangle

Solution: The altitude ℓ_C of a triangle $\triangle ABC$ through *C* is the line perpendicular to ℓ_{AB} through *C*.

(c) The circumcenter of a triangle

Solution: The perpendicular bisectors of the sides of a triangle are concurrent. The point of concurrence is called the circumcenter.

(d) The length of a vector $X \in \mathbb{R}^2$

Solution: The length of X is defined by $|X| = \sqrt{X \cdot X} = \sqrt{x_1^2 + x_2^2}$.

(e) Orthogonal projection of a vector Y onto a vector X

Solution: $\operatorname{Proj}_X Y = \frac{X \cdot Y}{|X|^2} X.$

3. (10 points) Let $X, Y \in \mathbb{R}^2$. Show that |X + Y| = |X - Y| if and only if $X \cdot Y = 0$.

Solution: It follows from $|X + Y|^2 - |X - Y|^2 = 4X \cdot Y$.

- 4. (a) (5 points) Write down the statement of the Cauchy–Schwarz inequality.
 - (b) (8 points) Let $x, y \in \mathbb{R}$ with $x^2 + y^2 = 4$. Find the maximum of 3x + 4y and determine for which values x, y the maximum is attained. (Hint: Consider A = (3, 4) and B = (x, y) and use the Cauchy–Schwarz inequality.)

Solution:

(a) For all $X, Y \in \mathbb{R}^2$, we have

$$X \cdot Y \le |X||Y|.$$

The equality holds if and only if X = rY or Y = rX for some $r \ge 0$.

(b) By Cauchy–Schwarz inequality, we have

$$3x + 4y = A \cdot B \leqslant |A||B| = 10.$$

Thus, the maximum is 10 and it is attained when (x, y) = B = rA = (3r, 4r) for some $r \ge 0$. Since $x^2 + y^2 = 4 = 25r^2$, we have $r = 2/5 \ge 0$. Thus, the maximum occurs when (x, y) = (6/5, 8/5).

Midterm 3

- 5. (a) (8 points) Let $A, B \in \mathbb{R}^2$ with $A \neq B$. Show that X is on the perpendicular bisector of \overline{AB} if and only if |X A| = |X B|.
 - (b) (8 points) Let $A, B, C \in \mathbb{R}^2$ form a triangle and K be the circumcenter of $\triangle ABC$. Show that |K A| = |K B| = |K C|.

Solution:

(a) Let ℓ be the perpendicular bisector. Suppose $X \in \ell$. Then

$$(X - \frac{1}{2}(A + B)) \cdot (A - B) = 0.$$

Let Y = X - A and Z = X - B, then it is equivalent to $(Y - Z) \cdot (Y + Z) = 0$. This implies that |Y| = |X - A| = |X - B| = |Z|.

On the other hand, assume |Y| = |X - A| = |X - B| = |Z|. Then, $|Y|^2 - |Z|^2 = 0$ implies $(Y + Z) \cdot (Y - Z) = 0$. Thus, $X \in \ell$.

- (b) Since *K* is on the perpendicular bisector of \overline{AB} , Part (a) yields |K A| = |K B|. Also, *K* is on the perpendicular bisector of \overline{BC} so that |K B| = |K C|, which finishes the proof.
- 6. (12 points) Let $\alpha : \mathbb{R}^2 \to \mathbb{R}^2$. Show that α is an isometry if and only if $(\alpha(X) \alpha(Z)) \cdot (\alpha(Y) \alpha(Z)) = (X Z) \cdot (Y Z)$ for all X, Y, Z.

Solution: Suppose α is an isometry. Then,

$$\begin{aligned} |\alpha(X) - \alpha(Y)|^2 &= |(\alpha(X) - \alpha(Z)) - (\alpha(Y) - \alpha(Z))|^2 \\ &= |\alpha(X) - \alpha(Z)|^2 - 2(\alpha(X) - \alpha(Z)) \cdot (\alpha(Y) - \alpha(Z)) + |\alpha(Y) - \alpha(Z)|^2 \\ &= |X - Z|^2 - 2(\alpha(X) - \alpha(Z)) \cdot (\alpha(Y) - \alpha(Z)) + |Y - Z|^2 \\ &= |X - Y|^2 + 2(X - Z) \cdot (Y - Z) - 2(\alpha(X) - \alpha(Z)) \cdot (\alpha(Y) - \alpha(Z)) + |Y - Z|^2. \end{aligned}$$

Since $|\alpha(X) - \alpha(Y)| = |X - Y|$, we conclude that

$$(X-Z)\cdot(Y-Z)=(\alpha(X)-\alpha(Z))\cdot(\alpha(Y)-\alpha(Z)).$$

On the other hand, if X = Y, then the assumption implies

$$|X - Z|^{2} = (X - Z) \cdot (X - Z) = (\alpha(X) - \alpha(Z)) \cdot (\alpha(X) - \alpha(Z)) = |\alpha(X) - \alpha(Z)|^{2}$$

for all *X*, *Z*. Thus, α is an isometry.