Math 403: Euclidean Geometry

Midterm 3 Solution, Fall 2021

Date: November 17, 2021

1. (24 points) Circle True or False. Do not justify your answer.
(a) True FALSE Let $X, Y \in \mathbb{R}^{2}$. If $X \cdot Y=0$, then $X=O$ or $Y=O$.

Solution: If $X=(1,0)$ and $Y=(0,1)$, then $X \cdot Y=0$.
(b) TRUE False Let $X, Y, Z \in \mathbb{R}^{2}$. If $X \cdot Y=Y \cdot Z=Z \cdot X=0$, then at least one of X, Y, Z is zero.

Solution: Suppose $Y, Z \neq O$. Since $Y \cdot Z=0, O, Y, Z$ are not collinear. Thus, there exists $a, b \in \mathbb{R}$ such that $X=a Y+b Z$. Then,

$$
X \cdot X=(a Y+b Z) \cdot X=a X \cdot Y+b Z \cdot X=0 .
$$

(c) True FALSE There exist $X, Y \in \mathbb{R}^{2}$ such that $|X|=4,|X-Y|=5$, and $|Y|=10$.

Solution: By the triangle inequality, we have $10=|Y| \leqslant|X|+|X-Y|=9$, which is a contradiction.
(d) TRUE False For any non-collinear distinct points $A, B, C \in \mathbb{R}^{2}$, there exists a circle \mathcal{S} such that $A, B, C \in \mathcal{S}$.

Solution: If K is the circumcenter, then $|K-A|=|K-B|=|K-C|$ so there exists such a circle.
(e) True FALSE Every isometry maps a line to a parallel line.

Solution: No. If $\alpha((x, y))=(y, x)$, then it is an isometry and maps the line $x=0$ to the line $y=0$.
(f) TRUE False Let A, B, C form a triangle, H the orthocenter, K the circumcenter, and D, E, F be the feet of the altitudes of A, B, C. Then, the nine point circle theorem tells us that if N is the midpoint of H and K, then

$$
|D-N|=|E-N|=|F-N| .
$$

Solution: The circle in the nine point circle theorem has the center at N and contains the feet D, E, F.
2. (25 points) Give definitions of the following.
(a) Rhombus

Solution: A rhombus is a parallelogram with sides of equal length.
(b) Altitudes of a triangle

Solution: The altitude ℓ_{C} of a triangle $\triangle A B C$ through C is the line perpendicular to $\ell_{A B}$ through C.
(c) The circumcenter of a triangle

Solution: The perpendicular bisectors of the sides of a triangle are concurrent. The point of concurrence is called the circumcenter.
(d) The length of a vector $X \in \mathbb{R}^{2}$

Solution: The length of X is defined by $|X|=\sqrt{X \cdot X}=\sqrt{x_{1}^{2}+x_{2}^{2}}$.
(e) Orthogonal projection of a vector Y onto a vector X

Solution: $\operatorname{Proj}_{X} Y=\frac{X \cdot Y}{|X|^{2}} X$.
3. (10 points) Let $X, Y \in \mathbb{R}^{2}$. Show that $|X+Y|=|X-Y|$ if and only if $X \cdot Y=0$.

Solution: It follows from $|X+Y|^{2}-|X-Y|^{2}=4 X \cdot Y$.
4. (a) (5 points) Write down the statement of the Cauchy-Schwarz inequality.
(b) (8 points) Let $x, y \in \mathbb{R}$ with $x^{2}+y^{2}=4$. Find the maximum of $3 x+4 y$ and determine for which values x, y the maximum is attained.
(Hint: Consider $A=(3,4)$ and $B=(x, y)$ and use the Cauchy-Schwarz inequality.)

Solution:

(a) For all $X, Y \in \mathbb{R}^{2}$, we have

$$
X \cdot Y \leq|X||Y| .
$$

The equality holds if and only if $X=r Y$ or $Y=r X$ for some $r \geqslant 0$.
(b) By Cauchy-Schwarz inequality, we have

$$
3 x+4 y=A \cdot B \leqslant|A||B|=10 .
$$

Thus, the maximum is 10 and it is attained when $(x, y)=B=r A=(3 r, 4 r)$ for some $r \geqslant 0$. Since $x^{2}+y^{2}=4=25 r^{2}$, we have $r=2 / 5 \geqslant 0$. Thus, the maximum occurs when $(x, y)=(6 / 5,8 / 5)$.
5. (a) (8 points) Let $A, B \in \mathbb{R}^{2}$ with $A \neq B$. Show that X is on the perpendicular bisector of $\overline{A B}$ if and only if $|X-A|=|X-B|$.
(b) (8 points) Let $A, B, C \in \mathbb{R}^{2}$ form a triangle and K be the circumcenter of $\triangle A B C$. Show that $|K-A|=$ $|K-B|=|K-C|$.

Solution:

(a) Let ℓ be the perpendicular bisector. Suppose $X \in \ell$. Then

$$
\left(X-\frac{1}{2}(A+B)\right) \cdot(A-B)=0 .
$$

Let $Y=X-A$ and $Z=X-B$, then it is equivalent to $(Y-Z) \cdot(Y+Z)=0$. This implies that $|Y|=|X-A|=|X-B|=|Z|$.
On the other hand, assume $|Y|=|X-A|=|X-B|=|Z|$. Then, $|Y|^{2}-|Z|^{2}=0$ implies $(Y+Z) \cdot(Y-Z)=0$. Thus, $X \in \ell$.
(b) Since K is on the perpendicular bisector of $\overline{A B}$, Part (a) yields $|K-A|=|K-B|$. Also, K is on the perpendicular bisector of $\overline{B C}$ so that $|K-B|=|K-C|$, which finishes the proof.
6. (12 points) Let $\alpha: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. Show that α is an isometry if and only if $(\alpha(X)-\alpha(Z)) \cdot(\alpha(Y)-\alpha(Z))=$ $(X-Z) \cdot(Y-Z)$ for all X, Y, Z.

Solution: Suppose α is an isometry. Then,

$$
\begin{aligned}
|\alpha(X)-\alpha(Y)|^{2} & =|(\alpha(X)-\alpha(Z))-(\alpha(Y)-\alpha(Z))|^{2} \\
& =|\alpha(X)-\alpha(Z)|^{2}-2(\alpha(X)-\alpha(Z)) \cdot(\alpha(Y)-\alpha(Z))+|\alpha(Y)-\alpha(Z)|^{2} \\
& =|X-Z|^{2}-2(\alpha(X)-\alpha(Z)) \cdot(\alpha(Y)-\alpha(Z))+|Y-Z|^{2} \\
& =|X-Y|^{2}+2(X-Z) \cdot(Y-Z)-2(\alpha(X)-\alpha(Z)) \cdot(\alpha(Y)-\alpha(Z))+|Y-Z|^{2} .
\end{aligned}
$$

Since $|\alpha(X)-\alpha(Y)|=|X-Y|$, we conclude that

$$
(X-Z) \cdot(Y-Z)=(\alpha(X)-\alpha(Z)) \cdot(\alpha(Y)-\alpha(Z)) .
$$

On the other hand, if $X=Y$, then the assumption implies

$$
|X-Z|^{2}=(X-Z) \cdot(X-Z)=(\alpha(X)-\alpha(Z)) \cdot(\alpha(X)-\alpha(Z))=|\alpha(X)-\alpha(Z)|^{2}
$$

for all X, Z. Thus, α is an isometry.

