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1. GROUP OF TRASFORMATIONS (SEC. 2.5)

Let V be a set and G be the set of all bijections (or trasformations, or permutations) f : V → V . Then
G with composition forms a group. The group G and its subgroups are called groups of permutations (or
trasformations) of V .

Theorem 1.1. Let T be the set of all translations τA : R2 → R2, A ∈ R2. Then, T with compositions is a group.

Proof. By the lemma, it suffices to show that for any A,B ∈ R2, τAτ−1B ∈ T . �

Theorem 1.2. Let C ∈ R2 be fixed and C be the set of all central dilatations δC,r with the fixed center C. Then, C
with compositions is a group.

Definition 1.3. We call a bijection map α : R2 → R2 a dilatation if α is either a translation or a central dilatation.

Definition 1.4. We call a bijection map collineation if it maps a line to a parallel line.

As we have seen before, dilatations are collineation.

Theorem 1.5. The set of all dilatations D with compositions forms a group.

Proof. Since (τA)
−1 = τ−A and (δC,r)

−1 = δC,1/r, it suffices to show that
(1) τAτB ∈ D,
(2) τAδC,r ∈ D,
(3) δC,rτA ∈ D,
(4) δC,rδD,s ∈ D.

We know that (1) is trivial and (3) follows from (2). Thus, it is enough to show (2) and (4). We first have

τAδC,r(X) = τA((1− r)C + rX)

= (1− r)( 1

1− r
A+ C) + rX

= δP,r(X)

where P = 1
1−rA+ C. Also,

δC,rδD,s(X) = (1− r)C + r(1− s)D + rsX =

{
τ(1−r)(C−D)(X), rs = 1,

δQ,rs(X), rs 6= 1,

where Q = (1− rs)−1((1− r)C + r(1− s)D). �

2. EQUIVALENCE RELATIONS

Definition 2.1. A property is said to be invariant under G is it still holds after the transformations of G are applied.
A geometric figure is invariant under G if it is mapped to itself by the transformations of G.

Example 2.2. Consider G be the set of all dilatations from R2 to R2. A line is invariant under G, and a property that
a line is parallel is also invariant under G.

Definition 2.3. Let G be a group. Two figures F1 and F2 in the plane are related by G if there exists α such that
α(F1) = F2. We use the notation F1 ∼ F2.

Proposition 2.4. (1) (Transitivity) If F1 ∼ F2 and F2 ∼ F3, then F1 ∼ F3.
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(2) (Symmetry) If F1 ∼ F2, then F2 ∼ F1.
(3) (Reflexivity) F1 ∼ F1.

If a relation ∼ satisfies the above three properties, then we say the relation is equivalent relation.

3. SCALAR PRODUCTS AND ORTHOGONALITY (SEC. 3.1–2)

Let X = (x1, x2) and Y = (y1, y2). The scalar product of X and Y is defined by

X · Y = x1y1 + x2y2.

The length of X is defined by |X| =
√
X ·X =

√
x21 + x22. The distance between X and Y is defined by

d(X,Y ) = |X − Y |.

Proposition 3.1. Let X,Y, Z ∈ R2 and r ∈ R.
(1) X · Y = Y ·X .
(2) (X + Y ) · Z = X · Z + Y · Z.
(3) (rX) · Y = r(X · Y ).
(4) X ·X ≥ 0 and equality holds if and only if X = O.
(5) |X + Y |2 + |X − Y |2 = 2(|X|2 + |Y |2).

Proof. (1), (2), (3): Exercise.
(4): Let X = (x, y), then X ·X = x2 + y2 = 0. Since x2, y2 > 0 and equal to zero only if x = 0, y = 0, the

proof is complete.
(5): It follows from

|X + Y |2 = (X + Y ) · (X + Y ) = |X|2 + |Y |2 + 2X · Y,
|X − Y |2 = (X − Y ) · (X − Y ) = |X|2 + |Y |2 − 2X · Y.

�

Two vectors X,Y are said to be orthogonal if X · Y = 0.

Example 3.2. Let E1 = (1, 0) and E2 = (0, 1), then they are orthogonal. In general X = (x, y) and Y = (−y, x)
are orthogonal.

A rhombus is a parallelogram with sides of equal length.

Proposition 3.3. A parallelogram is a rhombus if and only if its diagonals are orthogonal.

Proof. Let A,B,C,D form a parallelogram, then A + C = B +D. For notational convenience, we assume
A+ C = O = B +D without loss of generality. Thus, C = −A and D = −B.

If it is a rhombus, then |A−B| = |A−D| = |A+B|. Thus,

|A−B|2 = |A|2 − 2A ·B + |B|2 = |A|2 + 2A ·B + |B|2 = |A+B|2,

which implies A · B = 0. Thus, A and B are orthogonal. Since the diagonals are 2A and 2B, they are
orthogonal too. The converse also follows from the same argument. �

Theorem 3.4. The scalar product X · Y = 0 if and only if |X − Y |2 = |X|2 + |Y |2.

Definition 3.5. A rectangle is a parallelogram with orthogonal sides.

Proposition 3.6. A parallelogram is a rectangle if and only if its diagonals have the same length.

4. CIRCUMCENTERS AND ORTHOCENTERS (SEC. 3.2)

Definition 4.1. The perpendicular bisector `n of the segment A and B is the line orthogonal to `AB and passes
through the midpoint of A and B.

Proposition 4.2. Let `n be the perpendicular bisector of AB. Then, X ∈ `n if and only if |X −A| = |X −B|.
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Proof. Suppose X ∈ `n, then

(X − 1

2
(A+B)) · (A−B) = 0.

Let A′ = X −A and B′ = X −B, then the above equation can be written as (A′+B′) · (A′−B′) = 0, which
implies that |A′| = |B′|. On the other hand, |X −A| = |X −B| implies the above equation so that X lies on
the perpendicular bisector. �

Theorem 4.3. The perpendicular bisectors of the sides of a triangle are concurrent. The point of concurrence is called
the circumcenter.

Proof. Let `1, `2, `3 be perpendicular bisectors of the segmentsBC,CA, andAB respectively. LetX ∈ `1∩`2.
Then, |X −A| = |X −B| = |X − C|. Thus, X should lie on `3. �

Definition 4.4. The altitude `C of a triangle 4ABC through C is the line perpendicular to `AB through C. The
intersection point HC between `C and `AB is called the foot of `C .

Theorem 4.5. The altitudes of a triangle are concurrent. The point of concurrence is called the orthocenter.

There are three proofs.

First Proof. This proof relies on the following observation.

Lemma 4.6. For any points X,A,B,C ∈ R2, we have

(X −A) · (B − C) + (X −B) · (C −A) + (X − C) · (A−B) = 0.

If X ∈ `A ∩ `B , then

(X −A) · (B − C) = (X −B) · (C −A) = 0.

Thus, we have (X − C) · (A−B) = 0, which implies that X ∈ `C .
�

Lemma 4.7. Consider a triangle 4ABC. Let A′ be the midpoint of B and C. Let `n be the perpendicular bisector
through A′, and `A the altitude through A. Then, δG,−2 maps `n to `A, where G is the centroid.

Second Proof. Since δG,−2 maps each perpendicular bisector to the corresponding altitude and the perpen-
dicular bisectors are concurrent, so are the altitudes. Note that it also maps the concurrence point, the
circumcenter, to the concurrence point of the altitudes. �

Third Proof. Consider the image of 4ABC under δG,−2. Then, the image is also a triangle 4PQR and
A,B,C are the midpoints of P,Q,R. Since the perpendicular bisectors of4PQR coincide with the altitude
of4ABC, the proof is complete. �
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