MATH 403 LECTURE NOTE
 WEEK 8

DAESUNG KIM

1. Group of trasformations (SEc. 2.5)

Let V be a set and G be the set of all bijections (or trasformations, or permutations) $f: V \rightarrow V$. Then G with composition forms a group. The group G and its subgroups are called groups of permutations (or trasformations) of V.
Theorem 1.1. Let \mathcal{T} be the set of all translations $\tau_{A}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, A \in \mathbb{R}^{2}$. Then, \mathcal{T} with compositions is a group.
Proof. By the lemma, it suffices to show that for any $A, B \in \mathbb{R}^{2}, \tau_{A} \tau_{B}^{-1} \in \mathcal{T}$.
Theorem 1.2. Let $C \in \mathbb{R}^{2}$ be fixed and \mathcal{C} be the set of all central dilatations $\delta_{C, r}$ with the fixed center C. Then, \mathcal{C} with compositions is a group.

Definition 1.3. We call a bijection map $\alpha: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ a dilatation if α is either a translation or a central dilatation.
Definition 1.4. We call a bijection map collineation if it maps a line to a parallel line.
As we have seen before, dilatations are collineation.
Theorem 1.5. The set of all dilatations \mathcal{D} with compositions forms a group.
Proof. Since $\left(\tau_{A}\right)^{-1}=\tau_{-A}$ and $\left(\delta_{C, r}\right)^{-1}=\delta_{C, 1 / r}$, it suffices to show that
(1) $\tau_{A} \tau_{B} \in \mathcal{D}$,
(2) $\tau_{A} \delta_{C, r} \in \mathcal{D}$,
(3) $\delta_{C, r} \tau_{A} \in \mathcal{D}$,
(4) $\delta_{C, r} \delta_{D, s} \in \mathcal{D}$.

We know that (1) is trivial and (3) follows from (2). Thus, it is enough to show (2) and (4). We first have

$$
\begin{aligned}
\tau_{A} \delta_{C, r}(X) & =\tau_{A}((1-r) C+r X) \\
& =(1-r)\left(\frac{1}{1-r} A+C\right)+r X \\
& =\delta_{P, r}(X)
\end{aligned}
$$

where $P=\frac{1}{1-r} A+C$. Also,

$$
\delta_{C, r} \delta_{D, s}(X)=(1-r) C+r(1-s) D+r s X= \begin{cases}\tau_{(1-r)(C-D)}(X), & r s=1 \\ \delta_{Q, r s}(X), & r s \neq 1\end{cases}
$$

where $Q=(1-r s)^{-1}((1-r) C+r(1-s) D)$.

2. EQUIVALENCE RELATIONS

Definition 2.1. A property is said to be invariant under G is it still holds after the transformations of G are applied. A geometric figure is invariant under G if it is mapped to itself by the transformations of G.

Example 2.2. Consider G be the set of all dilatations from \mathbb{R}^{2} to \mathbb{R}^{2}. A line is invariant under G, and a property that a line is parallel is also invariant under G.

Definition 2.3. Let G be a group. Two figures F_{1} and F_{2} in the plane are related by G if there exists α such that $\alpha\left(F_{1}\right)=F_{2}$. We use the notation $F_{1} \sim F_{2}$.

Proposition 2.4. (1) (Transitivity) If $F_{1} \sim F_{2}$ and $F_{2} \sim F_{3}$, then $F_{1} \sim F_{3}$.
(2) (Symmetry) If $F_{1} \sim F_{2}$, then $F_{2} \sim F_{1}$.
(3) (Reflexivity) $F_{1} \sim F_{1}$.

If a relation \sim satisfies the above three properties, then we say the relation is equivalent relation.

3. Scalar products and orthogonality (Sec. 3.1-2)

Let $X=\left(x_{1}, x_{2}\right)$ and $Y=\left(y_{1}, y_{2}\right)$. The scalar product of X and Y is defined by

$$
X \cdot Y=x_{1} y_{1}+x_{2} y_{2}
$$

The length of X is defined by $|X|=\sqrt{X \cdot X}=\sqrt{x_{1}^{2}+x_{2}^{2}}$. The distance between X and Y is defined by $d(X, Y)=|X-Y|$.

Proposition 3.1. Let $X, Y, Z \in \mathbb{R}^{2}$ and $r \in \mathbb{R}$.
(1) $X \cdot Y=Y \cdot X$.
(2) $(X+Y) \cdot Z=X \cdot Z+Y \cdot Z$.
(3) $(r X) \cdot Y=r(X \cdot Y)$.
(4) $X \cdot X \geq 0$ and equality holds if and only if $X=O$.
(5) $|X+Y|^{2}+|X-Y|^{2}=2\left(|X|^{2}+|Y|^{2}\right)$.

Proof. (1), (2), (3): Exercise.
(4): Let $X=(x, y)$, then $X \cdot X=x^{2}+y^{2}=0$. Since $x^{2}, y^{2} \geqslant 0$ and equal to zero only if $x=0, y=0$, the proof is complete.
(5): It follows from

$$
\begin{aligned}
& |X+Y|^{2}=(X+Y) \cdot(X+Y)=|X|^{2}+|Y|^{2}+2 X \cdot Y, \\
& |X-Y|^{2}=(X-Y) \cdot(X-Y)=|X|^{2}+|Y|^{2}-2 X \cdot Y .
\end{aligned}
$$

Two vectors X, Y are said to be orthogonal if $X \cdot Y=0$.
Example 3.2. Let $E_{1}=(1,0)$ and $E_{2}=(0,1)$, then they are orthogonal. In general $X=(x, y)$ and $Y=(-y, x)$ are orthogonal.

A rhombus is a parallelogram with sides of equal length.
Proposition 3.3. A parallelogram is a rhombus if and only if its diagonals are orthogonal.
Proof. Let A, B, C, D form a parallelogram, then $A+C=B+D$. For notational convenience, we assume $A+C=O=B+D$ without loss of generality. Thus, $C=-A$ and $D=-B$.

If it is a rhombus, then $|A-B|=|A-D|=|A+B|$. Thus,

$$
|A-B|^{2}=|A|^{2}-2 A \cdot B+|B|^{2}=|A|^{2}+2 A \cdot B+|B|^{2}=|A+B|^{2}
$$

which implies $A \cdot B=0$. Thus, A and B are orthogonal. Since the diagonals are $2 A$ and $2 B$, they are orthogonal too. The converse also follows from the same argument.

Theorem 3.4. The scalar product $X \cdot Y=0$ if and only if $|X-Y|^{2}=|X|^{2}+|Y|^{2}$.
Definition 3.5. A rectangle is a parallelogram with orthogonal sides.
Proposition 3.6. A parallelogram is a rectangle if and only if its diagonals have the same length.

4. Circumcenters and Orthocenters (Sec. 3.2)

Definition 4.1. The perpendicular bisector ℓ_{n} of the segment A and B is the line orthogonal to $\ell_{A B}$ and passes through the midpoint of A and B.

Proposition 4.2. Let ℓ_{n} be the perpendicular bisector of $\overline{A B}$. Then, $X \in \ell_{n}$ if and only if $|X-A|=|X-B|$.

Proof. Suppose $X \in \ell_{n}$, then

$$
\left(X-\frac{1}{2}(A+B)\right) \cdot(A-B)=0
$$

Let $A^{\prime}=X-A$ and $B^{\prime}=X-B$, then the above equation can be written as $\left(A^{\prime}+B^{\prime}\right) \cdot\left(A^{\prime}-B^{\prime}\right)=0$, which implies that $\left|A^{\prime}\right|=\left|B^{\prime}\right|$. On the other hand, $|X-A|=|X-B|$ implies the above equation so that X lies on the perpendicular bisector.

Theorem 4.3. The perpendicular bisectors of the sides of a triangle are concurrent. The point of concurrence is called the circumcenter.

Proof. Let $\ell_{1}, \ell_{2}, \ell_{3}$ be perpendicular bisectors of the segments $B C, C A$, and $A B$ respectively. Let $X \in \ell_{1} \cap \ell_{2}$. Then, $|X-A|=|X-B|=|X-C|$. Thus, X should lie on ℓ_{3}.

Definition 4.4. The altitude ℓ_{C} of a triangle $\triangle A B C$ through C is the line perpendicular to $\ell_{A B}$ through C. The intersection point H_{C} between ℓ_{C} and $\ell_{A B}$ is called the foot of ℓ_{C}.

Theorem 4.5. The altitudes of a triangle are concurrent. The point of concurrence is called the orthocenter.
There are three proofs.
First Proof. This proof relies on the following observation.
Lemma 4.6. For any points $X, A, B, C \in \mathbb{R}^{2}$, we have

$$
(X-A) \cdot(B-C)+(X-B) \cdot(C-A)+(X-C) \cdot(A-B)=0
$$

If $X \in \ell_{A} \cap \ell_{B}$, then

$$
(X-A) \cdot(B-C)=(X-B) \cdot(C-A)=0
$$

Thus, we have $(X-C) \cdot(A-B)=0$, which implies that $X \in \ell_{C}$.

Lemma 4.7. Consider a triangle $\triangle A B C$. Let A^{\prime} be the midpoint of B and C. Let ℓ_{n} be the perpendicular bisector through A^{\prime}, and ℓ_{A} the altitude through A. Then, $\delta_{G,-2}$ maps ℓ_{n} to ℓ_{A}, where G is the centroid.

Second Proof. Since $\delta_{G,-2}$ maps each perpendicular bisector to the corresponding altitude and the perpendicular bisectors are concurrent, so are the altitudes. Note that it also maps the concurrence point, the circumcenter, to the concurrence point of the altitudes.

Third Proof. Consider the image of $\triangle A B C$ under $\delta_{G,-2}$. Then, the image is also a triangle $\triangle P Q R$ and A, B, C are the midpoints of P, Q, R. Since the perpendicular bisectors of $\triangle P Q R$ coincide with the altitude of $\triangle A B C$, the proof is complete.

References

[T] Philippe Tondeur, Vectors and Transformations in Plane Geometry, Publish Or Perish, Inc. 1993
Department of Mathematics, University of Illinois at Urbana-Champaign
E-mail address:daesungk@illinois.edu

