MATH 403 LECTURE NOTE
WEEK 8

DAESUNG KIM

1. GROUP OF TRASFORMATIONS (SEC. 2.5)

Let V be a set and G be the set of all bijections (or trasformations, or permutations) f : V' — V. Then
G with composition forms a group. The group G and its subgroups are called groups of permutations (or
trasformations) of V.

Theorem 1.1. Let T be the set of all translations 74 : R? — R?, A € R2. Then, T with compositions is a group.
Proof. By the lemma, it suffices to show that forany A, B € R, r475' € T.. |

Theorem 1.2. Let C' € R? be fixed and C be the set of all central dilatations dc. . with the fixed center C. Then, C
with compositions is a group.

Definition 1.3. We call a bijection map o : R* — R? a dilatation if o is either a translation or a central dilatation.
Definition 1.4. We call a bijection map collineation if it maps a line to a parallel line.

As we have seen before, dilatations are collineation.
Theorem 1.5. The set of all dilatations D with compositions forms a group.

Proof. Since (74)~' =7_a and (6¢,r) " = 0¢,1/,, it suffices to show that
(1) Tats €D,
(2) Tabc,r €D,
(3) 6077'7-14 S D/
(4) éc0p,s € D.
We know that (1) is trivial and (3) follows from (2). Thus, it is enough to show (2) and (4). We first have

Tabc (X)) =714a((1 —7)C +71X)
=(1 —T)(iA-FC) +rX
=0p,(X)
where P = 1A+ C. Also,
Ta—ryc—ny(X), 18=1,
6Q,T'S(X)a rs 7é 17
where Q = (1 —rs)"'((1 —r)C +r(1 —s)D). [ |

Scrdps(X)=(1—=7r)C+7r(l—s)D+rsX = {

2. EQUIVALENCE RELATIONS

Definition 2.1. A property is said to be invariant under G is it still holds after the transformations of G are applied.
A geometric figure is invariant under G if it is mapped to itself by the transformations of G.

Example 2.2. Consider G be the set of all dilatations from R? to R2. A line is invariant under G, and a property that
a line is parallel is also invariant under G.

Definition 2.3. Let G be a group. Two figures Fy and F5 in the plane are related by G if there exists o such that
a(Fy) = Fy. We use the notation Fy ~ Fy.

Proposition 2.4. (1) (Transitivity) If Fy ~ Fy and Fy ~ F5, then Fy ~ Fj.
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(2) (Symmetry) If Fy ~ Fy, then Fy ~ FJ.
(3) (Reflexivity) Fy ~ F.

If a relation ~ satisfies the above three properties, then we say the relation is equivalent relation.

3. SCALAR PRODUCTS AND ORTHOGONALITY (SEC. 3.1-2)
Let X = (z1,22) and Y = (y1,y2). The scalar product of X and Y is defined by

XY = z1y1 + 22y2.

The length of X is defined by |X| = VX - X = /27 + 23. The distance between X and Y is defined by
dX,)Y)=|X-Y]|.

Proposition 3.1. Let X,Y,Z € R2 and r € R.

(1) X Y=Y X

2 (X+Y)- Z=X-Z+Y-Z.

3) rX) Y=rXY)

(4) X - X > 0and equality holds if and only if X = O.
(5) | X +Y]2+|X -Y]?=2(X]*+ |Y]?).

Proof. (1), (2), (3): Exercise.

(4): Let X = (z,y), then X - X = z? 4+ y? = 0. Since 22, y* > 0 and equal to zero only if v = 0, y = 0, the
proof is complete.

(5): It follows from

X+YP=(X+Y) (X+Y)=[X]?+|Y]* +2X Y,
X -YP=(X-Y)- (X-Y)=|X>+|V]?-2X Y.

Two vectors X, Y are said to be orthogonal if X - Y = 0.

Example 3.2. Let B4 = (1,0) and E; = (0, 1), then they are orthogonal. In general X = (z,y) andY = (—y, x)
are orthogonal.

A rhombus is a parallelogram with sides of equal length.
Proposition 3.3. A parallelogram is a rhombus if and only if its diagonals are orthogonal.

Proof. Let A, B,C, D form a parallelogram, then A + C = B + D. For notational convenience, we assume
A+ C = O = B+ D without loss of generality. Thus, C = —Aand D = —B.
If it is a rhombus, then |A — B| = |[A — D| = |A + B|. Thus,

|A—BI>=|A? —2A-B+|B*=|A]? +2A-B+|B]*=|A + B,

which implies A - B = 0. Thus, A and B are orthogonal. Since the diagonals are 24 and 25, they are
orthogonal too. The converse also follows from the same argument. n

Theorem 3.4. The scalar product X - Y = 0ifand only if | X — Y |? = | X|? + |V |2
Definition 3.5. A rectangle is a parallelogram with orthogonal sides.

Proposition 3.6. A parallelogram is a rectangle if and only if its diagonals have the same length.

4. CIRCUMCENTERS AND ORTHOCENTERS (SEC. 3.2)

Definition 4.1. The perpendicular bisector £,, of the segment A and B is the line orthogonal to {ap and passes
through the midpoint of A and B.

Proposition 4.2. Let ¢,, be the perpendicular bisector of AB. Then, X € ¢, ifand only if | X — A| = |X — B|.
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Proof. Suppose X € ¢, then
1
(X~ 5(A+B))-(A-B)=0.

Let A’ = X — Aand B’ = X — B, then the above equation can be written as (4’ + B’) - (A’ — B’) = 0, which
implies that |A’| = |B’|. On the other hand, | X — A| = | X — B| implies the above equation so that X lies on
the perpendicular bisector. [ |

Theorem 4.3. The perpendicular bisectors of the sides of a triangle are concurrent. The point of concurrence is called
the circumcenter.

Proof. Let {1, {2, {3 be perpendicular bisectors of the segments BC, C'A, and AB respectively. Let X € ¢1N/¢5.
Then, | X — A| = |X — B| = |X — C|. Thus, X should lie on /3. [ |

Definition 4.4. The altitude (¢ of a triangle AABC through C is the line perpendicular to £ 4p through C. The
intersection point Hc between (¢ and £ 4 p is called the foot of (.

Theorem 4.5. The altitudes of a triangle are concurrent. The point of concurrence is called the orthocenter.
There are three proofs.
First Proof. This proof relies on the following observation.
Lemma 4.6. For any points X, A, B, C' € R?, we have
(X-4)-B-C)+(X-B)-(C-A)+(X-C)-(A-B)=0.
If X €l4N{p, then
(X—-4)-(B-C)=(X-B)-(C-A4)=0.

Thus, we have (X — C) - (A — B) = 0, which implies that X € {¢.
]

Lemma 4.7. Consider a triangle AABC. Let A’ be the midpoint of B and C. Let £, be the perpendicular bisector
through A’, and {4 the altitude through A. Then, ¢, _o maps £, to £ 4, where G is the centroid.

Second Proof. Since d¢,—2 maps each perpendicular bisector to the corresponding altitude and the perpen-
dicular bisectors are concurrent, so are the altitudes. Note that it also maps the concurrence point, the
circumcenter, to the concurrence point of the altitudes. [ |

Third Proof. Consider the image of AABC under g _2. Then, the image is also a triangle APQR and
A, B, C are the midpoints of P, ), R. Since the perpendicular bisectors of APQR coincide with the altitude
of AABC, the proof is complete. ]
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