## MATH 403 FALL 2021: QUIZ 6 SOLUTION DATE: OCT 13, 2021

Let $C, D \in \mathbb{R}^{2}$ with $C \neq D$.
(a) (4 points) For $X \in \mathbb{R}^{2}$, compute $\delta_{D, \frac{1}{2}} \circ \delta_{C, \frac{1}{2}}(X)$.

Solution.

$$
\begin{aligned}
\delta_{D, \frac{1}{2}} \circ \delta_{C, \frac{1}{2}}(X) & =\delta_{D, \frac{1}{2}}\left(\frac{1}{2} C+\frac{1}{2} X\right) \\
& =\frac{1}{2} D+\frac{1}{4} C+\frac{1}{4} X .
\end{aligned}
$$

(b) (3 points) Find $P \in \mathbb{R}^{2}$ and $r \in \mathbb{R}$ such that $\delta_{D, \frac{1}{2}} \circ \delta_{C, \frac{1}{2}}=\delta_{P, r}$.

## Solution.

$$
\begin{aligned}
\delta_{D, \frac{1}{2}} \circ \delta_{C, \frac{1}{2}}(X) & =\frac{1}{2} D+\frac{1}{4} C+\frac{1}{4} X \\
& =\frac{3}{4}\left(\frac{2}{3} D+\frac{1}{3} C\right)+\frac{1}{4} X \\
& =\delta_{P, \frac{1}{4}}(X)
\end{aligned}
$$

where $P=\frac{2}{3} D+\frac{1}{3} C$.
(c) (3 points) Find all fixed points of the map $\delta_{D, \frac{1}{2}} \circ \delta_{C, \frac{1}{2}}$.

Solution. The map $\delta_{P, \frac{1}{4}}$ has the unique fixed point $P$.

