Math 403: Euclidean Geometry

Midterm 1 Solution, Fall 2021

Date: September 22, 2021

1. (25 points) Circle True or False. Do not justify your answer.
(a) True FALSE Let $A^{\prime}, B^{\prime}, C^{\prime}$ be three noncollinear points in the plane. Then, there are at least two triangles $\triangle A B C$ with $\triangle A^{\prime} B^{\prime} C^{\prime}$ as the triangle of midpoints of its sides.

Solution: For given $A^{\prime}, B^{\prime}, C^{\prime}$, there is only one such triangle $\triangle A B C$ because

$$
A=-A^{\prime}+B^{\prime}+C^{\prime}, \quad B=A^{\prime}-B^{\prime}+C^{\prime}, \quad C=A^{\prime}+B^{\prime}-C^{\prime} .
$$

(b) True FALSE If A, B, C are not collinear and $a A+b B+c C=O$, then $a=b=c=0$.

Solution: Let $A=(0,0), B=(1,0)$, and $C=(0,1)$. Then, A, B, C are not collinear and $a A+b B+$ $c C=0$ with $b=c=0$ and $a=1$.
(c) TRUE False The point $P=3 B-2 A$ lies on the line $\ell_{A B}$.

Solution: Since $P=(1-t) A+t B$ with $t=3, P \in \ell_{A B}$.
(d) TRUE False Let $A=(3,-5), B=(2,1), C=(-4,2)$, and $D=(-3,-4)$. Then A, B, C, D forms a parallelogram.

Solution: Since $A+C=(-1,-3)=B+D$, it is a parallelogram.
(e) True FALSE Let A, B, C form a triangle. Menelaus theorem says that the points $A^{\prime}, B^{\prime}, C^{\prime}$ on the sides of $\triangle A B C$ are collinear if and only if

$$
\frac{A^{\prime}-B}{A^{\prime}-C} \cdot \frac{B^{\prime}-C}{B^{\prime}-A} \cdot \frac{C^{\prime}-A}{C^{\prime}-B}=-1 .
$$

Solution: The theorem says $A^{\prime}, B^{\prime}, C^{\prime}$ are collinear if and only if the product is 1 .
2. (a) (5 points) Write down the definition that two lines $\ell_{A B}$ and $\ell_{C D}$ are parallel.
(b) (10 points) Suppose that $\ell_{A B}$ is parallel to $\ell_{C D}$, and $\ell_{C D}$ is parallel to $\ell_{E F}$. Show that $\ell_{A B}$ is parallel to $\ell_{E F}$.

Solution:

(a) Two lines $\ell_{A B}$ and $\ell_{C D}$ are parallel if there exists a nonzero $t \in \mathbb{R}(t \neq 0)$ such that $A-B=$ $t(C-D)$.
(b) By the assumption, there exist $s, t \in \mathbb{R}$ such that $t \neq 0, s \neq 0, A-B=t(C-D)$, and $C-D=s(E-F)$. Thus, we have $A-B=t s(E-F)$ and $t s \neq 0$. By definition, $\ell_{A B}$ is parallel to $\ell_{E F}$.
3. (a) (5 points) Write down the definition of a parallelogram.
(b) (12 points) Let A, B, C, D form a parallelogram. Let M be the centroid of $\triangle B C D, N$ be the centroid of $\triangle C D A, L$ be the centroid of $\triangle D A B, P$ be the centroid of $\triangle A B C$. Show that a quadrilateral $M N L P$ defines a parallelogram.

Solution:

(a) A quadrilateral $A B C D$ is a parallelogram if $A+C=B+D$.
(b) We have

$$
M=\frac{1}{3}(B+C+D), \quad N=\frac{1}{3}(A+C+D), \quad L=\frac{1}{3}(A+B+D), \quad P=\frac{1}{3}(A+B+C) .
$$

Since $A+C=B+D$, we get

$$
M+L=\frac{1}{3}(A+B+C+D)+\frac{1}{3}(B+D)=\frac{1}{3}(A+B+C+D)+\frac{1}{3}(A+C)=N+P .
$$

4. Let A, B, C be three noncollinear points in \mathbb{R}^{2}.
(a) (5 points) Write down the definition of the barycentric coordinate with respect to A, B, C.
(b) (13 points) Let ℓ be the set of all points P such that its barycentric coordiate (a, b, c) satisfies $a=b+c$. Show that ℓ is a line.

Solution:

(a) Every point P in the plane can be uniquely written as $P=a A+b B+c C$ with $a+b+c=1$. Then (a, b, c) is called the barycentric coordinate of P with respect to A, B, C.
(b) Every point P on the line ℓ can be written as $P=a A+b B+c C$ with $a+b+c=1$ and $a=b+c$. Note that $a=b+c=\frac{1}{2}$. Thus,

$$
P=a A+b B+c C=b(A+B)+c(A+C)=t C^{\prime}+(1-t) B^{\prime}
$$

where $t=2 b, B^{\prime}=\frac{1}{2}(A+C)$, and $C^{\prime}=\frac{1}{2}(A+B)$. Since A, B, C are not collinear, we know that $B^{\prime} \neq C^{\prime}$. (Otherwise, $B=C$ so that A, B, C should be collinear.) Thus, $\ell=\ell_{B^{\prime} C^{\prime}}$.
5. Let $A, B, C \in \mathbb{R}^{2}$ form a triangle.
(a) (10 points) Write down the statement of Ceva's theorem.
(b) (15 points) Let

$$
A^{\prime}=\frac{1}{3}(2 B+C), \quad B^{\prime}=\frac{1}{3}(2 C+A), \quad C^{\prime}=\frac{1}{3}(2 A+B) .
$$

Are the three lines $\ell_{A A^{\prime}}, \ell_{B B^{\prime}}, \ell_{C C^{\prime}}$ concurrent? Justify your answer.

Solution:

(a) Let A, B, C form a triangle and $A^{\prime}, B^{\prime}, C^{\prime}$ lie on the sides of $\triangle A B C$ and be distinct from A, B, C. Then, the lines $\ell_{A A^{\prime}}, \ell_{B B^{\prime}}, \ell_{C C^{\prime}}$ are concurrent if and only if

$$
\frac{A^{\prime}-B}{A^{\prime}-C} \cdot \frac{B^{\prime}-C}{B^{\prime}-A} \cdot \frac{C^{\prime}-A}{C^{\prime}-B}=-1
$$

(b) One can see that

$$
\frac{A^{\prime}-B}{A^{\prime}-C}=\frac{B^{\prime}-C}{B^{\prime}-A}=\frac{C^{\prime}-A}{C^{\prime}-B}=-\frac{1}{2} .
$$

Since the product is $-\frac{1}{8}$, the lines are not concurrent.

