Math 403: Euclidean Geometry

Midterm 1 Solution, Fall 2021

Date: September 22, 2021

- 1. (25 points) Circle True or False. Do not justify your answer.
 - (a) True **FALSE** Let A', B', C' be three noncollinear points in the plane. Then, there are at least two triangles $\triangle ABC$ with $\triangle A'B'C'$ as the triangle of midpoints of its sides.

Solution: For given A', B', C', there is only one such triangle $\triangle ABC$ because

 $A = -A' + B' + C', \quad B = A' - B' + C', \quad C = A' + B' - C'.$

(b) True **FALSE** If A, B, C are not collinear and aA + bB + cC = O, then a = b = c = 0.

Solution: Let A = (0, 0), B = (1, 0), and C = (0, 1). Then, A, B, C are not collinear and aA + bB + cC = 0 with b = c = 0 and a = 1.

(c) **TRUE** False The point P = 3B - 2A lies on the line ℓ_{AB} .

Solution: Since P = (1 - t)A + tB with t = 3, $P \in \ell_{AB}$.

(d) **TRUE** False Let A = (3, -5), B = (2, 1), C = (-4, 2), and D = (-3, -4). Then A, B, C, D forms a parallelogram.

Solution: Since A + C = (-1, -3) = B + D, it is a parallelogram.

(e) True **FALSE** Let A, B, C form a triangle. Menelaus theorem says that the points A', B', C' on the sides of $\triangle ABC$ are collinear if and only if

$$\frac{A'-B}{A'-C}\cdot\frac{B'-C}{B'-A}\cdot\frac{C'-A}{C'-B}=-1.$$

Solution: The theorem says A', B', C' are collinear if and only if the product is 1.

- 2. (a) (5 points) Write down the definition that two lines ℓ_{AB} and ℓ_{CD} are parallel.
 - (b) (10 points) Suppose that ℓ_{AB} is parallel to ℓ_{CD} , and ℓ_{CD} is parallel to ℓ_{EF} . Show that ℓ_{AB} is parallel to ℓ_{EF} .

Solution:

- (a) Two lines ℓ_{AB} and ℓ_{CD} are parallel if there exists a nonzero $t \in \mathbb{R}$ ($t \neq 0$) such that A B = t(C D).
- (b) By the assumption, there exist $s, t \in \mathbb{R}$ such that $t \neq 0$, $s \neq 0$, A B = t(C D), and C D = s(E F). Thus, we have A B = ts(E F) and $ts \neq 0$. By definition, ℓ_{AB} is parallel to ℓ_{EF} .
- 3. (a) (5 points) Write down the definition of a parallelogram.
 - (b) (12 points) Let A, B, C, D form a parallelogram. Let M be the centroid of $\triangle BCD$, N be the centroid of $\triangle CDA$, L be the centroid of $\triangle DAB$, P be the centroid of $\triangle ABC$. Show that a quadrilateral MNLP defines a parallelogram.

Solution:

- (a) A quadrilateral *ABCD* is a parallelogram if A + C = B + D.
- (b) We have

$$M = \frac{1}{3}(B + C + D), \quad N = \frac{1}{3}(A + C + D), \quad L = \frac{1}{3}(A + B + D), \quad P = \frac{1}{3}(A + B + C)$$

Since A + C = B + D, we get

$$M + L = \frac{1}{3}(A + B + C + D) + \frac{1}{3}(B + D) = \frac{1}{3}(A + B + C + D) + \frac{1}{3}(A + C) = N + P.$$

- 4. Let A, B, C be three noncollinear points in \mathbb{R}^2 .
 - (a) (5 points) Write down the definition of the barycentric coordinate with respect to A, B, C.
 - (b) (13 points) Let ℓ be the set of all points *P* such that its barycentric coordiate (a, b, c) satisfies a = b + c. Show that ℓ is a line.

Solution:

- (a) Every point *P* in the plane can be uniquely written as P = aA + bB + cC with a + b + c = 1. Then (a, b, c) is called the barycentric coordinate of *P* with respect to *A*, *B*, *C*.
- (b) Every point *P* on the line ℓ can be written as P = aA + bB + cC with a + b + c = 1 and a = b + c. Note that $a = b + c = \frac{1}{2}$. Thus,

$$P = aA + bB + cC = b(A + B) + c(A + C) = tC' + (1 - t)B'$$

where t = 2b, $B' = \frac{1}{2}(A + C)$, and $C' = \frac{1}{2}(A + B)$. Since A, B, C are not collinear, we know that $B' \neq C'$. (Otherwise, B = C so that A, B, C should be collinear.) Thus, $\ell = \ell_{B'C'}$.

5. Let $A, B, C \in \mathbb{R}^2$ form a triangle.

- (a) (10 points) Write down the statement of Ceva's theorem.
- (b) (15 points) Let

$$A' = \frac{1}{3}(2B + C), \quad B' = \frac{1}{3}(2C + A), \quad C' = \frac{1}{3}(2A + B).$$

Are the three lines $\ell_{AA'}, \ell_{BB'}, \ell_{CC'}$ concurrent? Justify your answer.

Solution:

(a) Let A, B, C form a triangle and A', B', C' lie on the sides of $\triangle ABC$ and be distinct from A, B, C. Then, the lines $\ell_{AA'}, \ell_{BB'}, \ell_{CC'}$ are concurrent if and only if

$$\frac{A'-B}{A'-C}\cdot\frac{B'-C}{B'-A}\cdot\frac{C'-A}{C'-B}=-1.$$

(b) One can see that

$$\frac{A'-B}{A'-C} = \frac{B'-C}{B'-A} = \frac{C'-A}{C'-B} = -\frac{1}{2}.$$

Since the product is $-\frac{1}{8}$, the lines are not concurrent.