MATH 403 FALL 2021: FINAL EXAM PRACTICE PROBLEMS

1. Definitions

(a) Two lines are parallel (perpendicular).
(b) Centroid, barycentric coordinates
(c) Fixed points of a map.
(d) Central dilatation, translation, dilatation, central reflection.
(e) Scalar product of X, Y, the length of X, the distance between X, Y.
(f) Parallelogram, rhombus, rectangle, circle
(g) Perpendicular bisectors, altitude, the foot of altitude, circumcenter, orthocenter
(h) Distance between X and Y, The length of X
(i) Orthogonal projection, angle, determinant
(j) An isometry, a linear isometry, a linear map
(k) Reflection, involutions, rotations

2. Statements of Theorems

(a) Ceva's Theorem, Menelaus' Theorem
(b) Pythagoras Theorem, Thales Theorem, Parallelogram Law
(c) Triangle inequality, Cauchy-Schwarz inequality
(d) Nine point circle theorem

3. Examples

Give an example, or explain why no such example exists.
(a) Find an isometry α such that $\alpha(0,0)=(0,1)$ and $\alpha(1,0)=(3,0)$.
(b) Find an isometry α such that $\alpha \neq \operatorname{Id}, \alpha(0,0)=(0,0)$, and $\alpha(1,1)=(1,1)$. In this case, what is $\alpha(3,3)$? Can we find two different such isometries?
(c) Find an involutive isometry α such that $\alpha(0,0)=(4,0)$.

4. Proof or Disproof

4.1. Lines and Triangles.

(a) Two distinct parallel lines do not intersect.
(b) Two lines are perpendicular to a line ℓ, then they are parallel.
(c) The centroid of a triangle is the centroid of the triangle of the midpoints of its sides.
(d) The altitudes (the medians, the perpendicular bisectors) of a triangle are concurrent.
(e) A vector X is on the perpendicular bisector of $\overline{A B}$ if and only if $|X-A|=|X-B|$.

4.2. Dilatations.

(a) For a dilatation $\alpha, \alpha\left(\ell_{A B}\right)=\ell_{\alpha(A) \alpha(B)}$.
(b) For a dilatation $\alpha, \ell_{A B} / / \ell_{\alpha(A) \alpha(B)}$.
(c) Every dilatation is an isometry.
(d) Translation preserves the centroid of three points.
(e) Every dilatation has at least one fixed point.
(f) Central dilatations preserve midpoints.
(g) $\delta_{C, r}$ is an involution if $r=1$ or $r=-1$.

4.3. Group theory.

(a) Let V be a set and G be the set of all bijections $\alpha: V \rightarrow V$. Show that G with composition is a group.
(b) The set of all translations forms a group.
(c) The set of all central dilatations forms a group.
(d) The set of all isometries forms a group.
(e) For fixed $A \neq O,\left\{\tau_{c A}: c \in \mathbb{R}\right\}$ is a group.
(f) For fixed $C \in \mathbb{R}^{2},\left\{\delta_{C, r}: r \in \mathbb{R}, r>0\right\}$ is a group.
4.4. Scalar Product.
(a) If $X \cdot Y=Y \cdot Z=Z \cdot X=0$, then one of X, Y, Z is zero.
(b) If $|X|=3,|Y|=4$, then $|X \cdot Y| \leqslant 12$.
(c) If X is perpendicular to Y, then $|X+Y|^{2}=|X|^{2}+|Y|^{2}$.
4.5. Isometry.
(a) If α is an isometry, then $(\alpha(X)-\alpha(Z)) \cdot(\alpha(Y)-\alpha(Z))=(X-Z) \cdot(Y-Z)$ for all X, Y, Z.
(b) Every isometry is the composition of a translation and a linear isometry.
(c) If α is an isometry and $a+b+c=1$, then

$$
\alpha(a X+b Y+c Z)=a \alpha(X)+b \alpha(Y)+c \alpha(Z) .
$$

(d) If an isometry has two distinct fixed points, then it is either the identity or a reflection.
(e) If an isometry has a unique fixed point, it is the composition of two reflections.
(f) Let $\tau(x, y)=(x, y+2)$. Find two lines ℓ, m such that $\tau=\sigma_{\ell} \circ \sigma_{m}$.
(g) Find a translation and a linear isometry such that $\sigma_{C}=\tau_{R} \circ L$.

