MATH 403 FALL 2021: HOMEWORK 5 SOLUTION

INSTRUCTOR: DAESUNG KIM
DUE DATE: OCT 8, 2021

1. Exercise 2.3

Solution: Let $a^{\prime}=a / r$ and $b^{\prime}=b / r$, then $P=a A+b B=a^{\prime}(r A)+b^{\prime}(r B)$ with $a^{\prime}+b^{\prime}=1$. Thus, P is a point on the line $\ell_{r A, r B}$. In other words, P lies on the image $\delta_{r}\left(\ell_{A B}\right)$.
2. Exercise 2.4(i)

Solution: Let $\alpha=\delta_{A, 2}$. Then, $\alpha\left(B^{\prime}\right)=C$ and $\alpha\left(C^{\prime}\right)=B$. Since α maps from a line to a parallel line, $\alpha\left(\ell_{B B^{\prime}}\right)$ is a parallel line through C and $\alpha\left(\ell_{C C^{\prime}}\right)$ is a parallel line through B. Also, $\alpha\left(\ell_{B B^{\prime}}\right)$ and $\alpha\left(\ell_{C C^{\prime}}\right)$ meet at $G^{\prime}:=\alpha(G)$. By definition of α, we know that A, G, G^{\prime} are collinear. Thus, B, G, C, G^{\prime} forms a parallelogram. Since the diagonals of a parallelogram bisect each other, $\ell_{B C}$ and $\ell_{G G^{\prime}}$ meet at A^{\prime}. Therefore, G is on the line $\ell_{A A^{\prime}}$ as desired.
3. Exercise 2.5: Let $\ell_{A A^{\prime}}, \ell_{B B^{\prime}}, \ell_{C C^{\prime}}$ be three lines concurrent in D. If $\ell_{A B} / / \ell_{A^{\prime} B^{\prime}}, \ell_{B C} / / \ell_{B^{\prime} C^{\prime}}$, then prove $\ell_{A C} / / \ell_{A^{\prime} C^{\prime}}$.

Solution: Since D, A, A^{\prime} are collinear, there exists $r \in \mathbb{R}$ such that $\delta_{D, r}(A)=A^{\prime}$. Let $\alpha=\delta_{D, r}$. Since $\alpha\left(\ell_{A B}\right)$ is parallel to $\ell_{A B}$ and passes through A^{\prime}, we have $B^{\prime} \in \alpha\left(\ell_{A B}\right)$. Since D, B, B^{\prime} are collinear, we get $\alpha(B)=B^{\prime}$. Similarly, we get $\alpha(C)=C^{\prime}$. Since $\alpha\left(\ell_{A C}\right)=\ell_{A^{\prime} C^{\prime}}$, the proof is complete.
4. Exercise 2.6

Solution: Since O, B, B^{\prime} are collinear, there exists $\alpha=\delta_{r}$ such that $\alpha(B)=B^{\prime}$. Similarly, there exists $\beta=\delta_{s}$ such that $\beta(C)=C^{\prime}$. Since $X \in \ell_{B B^{\prime}}$ and $\ell_{B^{\prime} C} / / \ell_{X C^{\prime}}$, we know that $\beta\left(B^{\prime}\right)=X$. Similarly, $\alpha\left(C^{\prime}\right)=Y$. Let $\gamma=\alpha \beta=\beta \alpha=\delta_{r s}$, then $X=\gamma(B)$ and $Y=\gamma(C)$. Thus, $\ell_{B C} / / \ell_{X Y}=\gamma\left(\ell_{B C}\right)$.
5. Exercise 2.8

Solution: It follows from

$$
\begin{aligned}
& (\beta \alpha)\left(\alpha^{-1} \beta^{-1}\right)=\beta\left(\alpha \alpha^{-1}\right) \beta^{-1}=(\beta e) \beta^{-1}=\beta \beta^{-1}=e \\
& \left(\alpha^{-1} \beta^{-1}\right)(\beta \alpha)=\alpha^{-1}\left(\beta^{-1} \beta\right) \alpha=\left(\alpha^{-1} e\right) \alpha=\alpha^{-1} \alpha=e
\end{aligned}
$$

6. Exercise 2.9

Solution: Fix A and Q. Since $\sigma_{Q}^{-1}=\sigma_{Q}$, the equation $\tau_{A}=\sigma_{Q} \sigma_{P}$ implies $\sigma_{P}=\sigma_{Q} \tau_{A}$. For $X \in \mathbb{R}^{2}$, we have

$$
\sigma_{Q} \tau_{A}(X)=2 Q-(A+X)=2\left(Q-\frac{1}{2} A\right)-X=\sigma_{P}(X)
$$

where $P=Q-\frac{1}{2} A$.

