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1. GROUPS (SEC 2.6)

Definition 1.1. Let G be a set equipped with an operation (x, y) 7→ xy ∈ G for all x, y ∈ G. We say G is a group
with the operation if

(1) There exsits an element e in G such that ex = xe = x for all x ∈ G. We call e the identity.
(2) For every x ∈ G, there is an element x−1 ∈ G such that xx−1 = x−1x = e.
(3) For all x, y, z ∈ G, we have x(yz) = (xy)z.

Example 1.2. (1) The real numbers R with addtion is a group.
(2) The positive real numbers R+ with multiplication is a group.
(3) The integers Z with addtion is a group.
(4) The even integers 2Z with addtion is a group.

Example 1.3. (1) The natural numbers N with addtion is NOT a group.
(2) The real numbers R with multiplication is NOT a group.
(3) The odd integers with addtion is NOT a group.

Definition 1.4. A group G is called commutative or abelian if xy = yx for all x, y ∈ G.

Example 1.5. Let A be a set and G be the collection of all bijections f : A → A. Then, G with composition is a
non-abelian group. (Exercise)

Definition 1.6. Let n ∈ N and Zn = {0, 1, 2, · · · , n − 1}. Define the addition and the multiplication on Zn by the
residues left after division by n.

Example 1.7. One can see that Zn with addition is a group.

Proposition 1.8. Let G be a group and x ∈ G. Then, the identity and the inverse of x are unique.

Proposition 1.9. Let G be a group and a, b ∈ G.
(1) The equation ax = b has a unique solution x.
(2) The equation ya = b has a unique solution y.

Proposition 1.10 (Cancellation rules). Let G be a group.
(1) ax = ax′ implies x = x′.
(2) ya = y′a implies y = y′.

Example 1.11. In Z12, 3x = 5 has no solution.

2. SUBGROUPS, CYCLIC GROUPS, AND ISOMORPHISM

Definition 2.1. Let G be a group and H a subset of G. If H is also a group itself, we call H a subgroup of G.

Example 2.2. (1) If G is a group and e ∈ G is the identity, then {e} is a subgroup. This is called the trivial
subgroup.

(2) The even integers 2Z is a subgroup of Z.

Lemma 2.3. Let G be a group and H a subset of G. Then H is a subgroup if and only if ab−1 ∈ H for all a, b ∈ H .

Proof. Suppose H is a subgroup, then ab−1 ∈ H for all a, b ∈ H by definition. Suppose we know that
ab−1 ∈ H for all a, b ∈ H . If a = b, then e ∈ H . If a = e, then every element in H has the inverse in H . The
associativity works in H . For any a, b ∈ H , ab = a(b−1)−1 ∈ H . Thus H is a group. �
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For an element x in a group G, we use the notation

xm := x · x · · ·x (mtimes)

for m ∈ N. If m = 0, xm := E. If m < 0, then xm = (x−1)m.

Definition 2.4. Let G a group and x ∈ G. The cyclic group 〈x〉 generated by x is a subgroup of G consists of xm,
m ∈ Z.

Example 2.5. Let G = Z be a group with addtion. What is 〈2〉?

Proposition 2.6. Let G a group and x ∈ G. The cyclic group 〈x〉 is the smallest subgroup containing x.

Definition 2.7. Let G, H be groups and ϕ : G→ H a map. The map ϕ is called a homomorphism if it preserves the
group structure, in a sense that ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ G.

Proposition 2.8. If ϕ is a homomorphism from G to H , then it maps the identity and inverses in G to the inverse
and inverses in H .

Example 2.9. Consider a map ϕ : Z→ Z defined by x 7→ 2x. One can see that ϕ is a homomorphism.

Definition 2.10. An isomorphism is a bijective homomorphism. We say two groups are isomorphic if there is an
isomorphism between the groups.

3. GROUPS OF TRANSFORMATIONS

Let V a set. We have seen that the set of all bijections α : V → V with compositions is a group, say G. In
this section, we will see several subgroups of G. In particular, we are interested in the case V = R2.

Theorem 3.1. Let T be the set of all translations τA : R2 → R2, A ∈ R2. Then, T with compositions is a group.

Proof. By the lemma, it suffices to show that for any A,B ∈ R2, τAτ−1B ∈ T . �

Definition 3.2. We call a bijection map α : R2 → R2 a dilatation if α is either a translation or a central dilatation.

Definition 3.3. We call a bijection map collineation if it maps a line to a parallel line.

As we have seen before, dilatations are collineation.

Theorem 3.4. The set of all dilatations D with compositions forms a group.

Proof. Since (τA)
−1 = τ−A and (δC,r)

−1 = δC,1/r, it suffices to show that
(1) τAτB ∈ D,
(2) τAδC,r ∈ D,
(3) δC,rτA ∈ D,
(4) δC,rδD,s ∈ D.

We know that (1) is trivial and (3) follows from (2). Thus, it is enough to show (2) and (4). We first have

τAδC,r(X) = τA((1− r)C + rX)

= (1− r)( 1

1− r
A+ C) + rX

= δP,r(X)

where P = 1
1−rA+ C. Also,

δC,rδD,s(X) = (1− r)C + r(1− s)D + rsX =

{
τ(1−r)(C−D)(X), rs = 1,

δQ,rs(X), rs 6= 1,

where Q = (1− rs)−1((1− r)C + r(1− s)D). �
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