MATH 403 LECTURE NOTE
 WEEK 7

DAESUNG KIM

1. Groups (Sec 2.6)

Definition 1.1. Let G be a set equipped with an operation $(x, y) \mapsto x y \in \mathcal{G}$ for all $x, y \in G$. We say G is a group with the operation if
(1) There exsits an element e in G such that $e x=x e=x$ for all $x \in G$. We call e the identity.
(2) For every $x \in G$, there is an element $x^{-1} \in G$ such that $x x^{-1}=x^{-1} x=e$.
(3) For all $x, y, z \in G$, we have $x(y z)=(x y) z$.

Example 1.2. (1) The real numbers \mathbb{R} with addtion is a group.
(2) The positive real numbers \mathbb{R}_{+}with multiplication is a group.
(3) The integers \mathbb{Z} with addtion is a group.
(4) The even integers $2 \mathbb{Z}$ with addtion is a group.

Example 1.3. (1) The natural numbers \mathbb{N} with addtion is NOT a group.
(2) The real numbers \mathbb{R} with multiplication is NOT a group.
(3) The odd integers with addtion is NOT a group.

Definition 1.4. A group G is called commutative or abelian if $x y=y x$ for all $x, y \in G$.
Example 1.5. Let A be a set and G be the collection of all bijections $f: A \rightarrow A$. Then, G with composition is a non-abelian group. (Exercise)

Definition 1.6. Let $n \in \mathbb{N}$ and $\mathbb{Z}_{n}=\{0,1,2, \cdots, n-1\}$. Define the addition and the multiplication on \mathbb{Z}_{n} by the residues left after division by n.

Example 1.7. One can see that \mathbb{Z}_{n} with addition is a group.
Proposition 1.8. Let G be a group and $x \in G$. Then, the identity and the inverse of x are unique.
Proposition 1.9. Let G be a group and $a, b \in G$.
(1) The equation $a x=b$ has a unique solution x.
(2) The equation $y a=b$ has a unique solution y.

Proposition 1.10 (Cancellation rules). Let \mathcal{G} be a group.
(1) $a x=a x^{\prime}$ implies $x=x^{\prime}$.
(2) $y a=y^{\prime}$ a implies $y=y^{\prime}$.

Example 1.11. In $\mathbb{Z}_{12}, 3 x=5$ has no solution.

2. SUBGROUPS, CYCLIC GROUPS, AND ISOMORPHISM

Definition 2.1. Let G be a group and H a subset of G. If H is also a group itself, we call H a subgroup of G.
Example 2.2. (1) If G is a group and $e \in G$ is the identity, then $\{e\}$ is a subgroup. This is called the trivial subgroup.
(2) The even integers $2 \mathbb{Z}$ is a subgroup of \mathbb{Z}.

Lemma 2.3. Let G be a group and H a subset of G. Then H is a subgroup if and only if $a b^{-1} \in H$ for all $a, b \in H$.
Proof. Suppose H is a subgroup, then $a b^{-1} \in H$ for all $a, b \in H$ by definition. Suppose we know that $a b^{-1} \in H$ for all $a, b \in H$. If $a=b$, then $e \in H$. If $a=e$, then every element in H has the inverse in H. The associativity works in H. For any $a, b \in H, a b=a\left(b^{-1}\right)^{-1} \in H$. Thus H is a group.

For an element x in a group G, we use the notation

$$
x^{m}:=x \cdot x \cdots x \quad(m \text { times })
$$

for $m \in \mathbb{N}$. If $m=0, x^{m}:=E$. If $m<0$, then $x^{m}=\left(x^{-1}\right)^{m}$.
Definition 2.4. Let G a group and $x \in G$. The cyclic group $\langle x\rangle$ generated by x is a subgroup of G consists of x^{m}, $m \in \mathbb{Z}$.

Example 2.5. Let $G=\mathbb{Z}$ be a group with addtion. What is $\langle 2\rangle$?
Proposition 2.6. Let G a group and $x \in G$. The cyclic group $\langle x\rangle$ is the smallest subgroup containing x.
Definition 2.7. Let G, H be groups and $\varphi: G \rightarrow H$ a map. The map φ is called a homomorphism if it preserves the group structure, in a sense that $\varphi(x y)=\varphi(x) \varphi(y)$ for all $x, y \in G$.

Proposition 2.8. If φ is a homomorphism from G to H, then it maps the identity and inverses in G to the inverse and inverses in H.

Example 2.9. Consider a map $\varphi: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $x \mapsto 2 x$. One can see that φ is a homomorphism.
Definition 2.10. An isomorphism is a bijective homomorphism. We say two groups are isomorphic if there is an isomorphism between the groups.

3. GROUPS OF TRANSFORMATIONS

Let \mathcal{V} a set. We have seen that the set of all bijections $\alpha: \mathcal{V} \rightarrow \mathcal{V}$ with compositions is a group, say G. In this section, we will see several subgroups of G. In particular, we are interested in the case $\mathcal{V}=\mathbb{R}^{2}$.

Theorem 3.1. Let \mathcal{T} be the set of all translations $\tau_{A}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, A \in \mathbb{R}^{2}$. Then, \mathcal{T} with compositions is a group.
Proof. By the lemma, it suffices to show that for any $A, B \in \mathbb{R}^{2}, \tau_{A} \tau_{B}^{-1} \in \mathcal{T}$.
Definition 3.2. We call a bijection map $\alpha: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ a dilatation if α is either a translation or a central dilatation.
Definition 3.3. We call a bijection map collineation if it maps a line to a parallel line.
As we have seen before, dilatations are collineation.
Theorem 3.4. The set of all dilatations \mathcal{D} with compositions forms a group.
Proof. Since $\left(\tau_{A}\right)^{-1}=\tau_{-A}$ and $\left(\delta_{C, r}\right)^{-1}=\delta_{C, 1 / r}$, it suffices to show that
(1) $\tau_{A} \tau_{B} \in \mathcal{D}$,
(2) $\tau_{A} \delta_{C, r} \in \mathcal{D}$,
(3) $\delta_{C, r} \tau_{A} \in \mathcal{D}$,
(4) $\delta_{C, r} \delta_{D, s} \in \mathcal{D}$.

We know that (1) is trivial and (3) follows from (2). Thus, it is enough to show (2) and (4). We first have

$$
\begin{aligned}
\tau_{A} \delta_{C, r}(X) & =\tau_{A}((1-r) C+r X) \\
& =(1-r)\left(\frac{1}{1-r} A+C\right)+r X \\
& =\delta_{P, r}(X)
\end{aligned}
$$

where $P=\frac{1}{1-r} A+C$. Also,

$$
\delta_{C, r} \delta_{D, s}(X)=(1-r) C+r(1-s) D+r s X= \begin{cases}\tau_{(1-r)(C-D)}(X), & r s=1 \\ \delta_{Q, r s}(X), & r s \neq 1\end{cases}
$$

where $Q=(1-r s)^{-1}((1-r) C+r(1-s) D)$.

References

[T] Philippe Tondeur, Vectors and Transformations in Plane Geometry, Publish Or Perish, Inc. 1993
Department of Mathematics, University of Illinois at Urbana-Champaign
E-mail address:daesungk@illinois.edu

