MATH 403 LECTURE NOTE WEEK 7

DAESUNG KIM

1. GROUPS (SEC 2.6)

Definition 1.1. Let G be a set equipped with an operation $(x, y) \mapsto xy \in G$ for all $x, y \in G$. We say G is a group with the operation if

(1) There exsits an element e in G such that ex = xe = x for all $x \in G$. We call e the identity.

(2) For every $x \in G$, there is an element $x^{-1} \in G$ such that $xx^{-1} = x^{-1}x = e$.

(3) For all $x, y, z \in G$, we have x(yz) = (xy)z.

Example 1.2. (1) The real numbers \mathbb{R} with addition is a group.

- (2) The positive real numbers \mathbb{R}_+ with multiplication is a group.
- (3) The integers \mathbb{Z} with additon is a group.
- (4) The even integers $2\mathbb{Z}$ with addition is a group.

Example 1.3. (1) The natural numbers \mathbb{N} with addition is NOT a group.

- (2) The real numbers \mathbb{R} with multiplication is NOT a group.
- (3) The odd integers with additon is NOT a group.

Definition 1.4. A group G is called commutative or abelian if xy = yx for all $x, y \in G$.

Example 1.5. Let A be a set and G be the collection of all bijections $f : A \to A$. Then, G with composition is a non-abelian group. (Exercise)

Definition 1.6. Let $n \in \mathbb{N}$ and $\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$. Define the addition and the multiplication on \mathbb{Z}_n by the residues left after division by n.

Example 1.7. One can see that \mathbb{Z}_n with addition is a group.

Proposition 1.8. Let G be a group and $x \in G$. Then, the identity and the inverse of x are unique.

Proposition 1.9. Let G be a group and $a, b \in G$.

- (1) The equation ax = b has a unique solution x.
- (2) The equation ya = b has a unique solution y.

Proposition 1.10 (Cancellation rules). *Let G be a group*.

- (1) ax = ax' implies x = x'.
- (2) ya = y'a implies y = y'.

Example 1.11. In \mathbb{Z}_{12} , 3x = 5 has no solution.

2. SUBGROUPS, CYCLIC GROUPS, AND ISOMORPHISM

Definition 2.1. Let G be a group and H a subset of G. If H is also a group itself, we call H a subgroup of G.

Example 2.2. (1) If G is a group and $e \in G$ is the identity, then $\{e\}$ is a subgroup. This is called the trivial subgroup.

(2) The even integers $2\mathbb{Z}$ is a subgroup of \mathbb{Z} .

Lemma 2.3. Let G be a group and H a subset of G. Then H is a subgroup if and only if $ab^{-1} \in H$ for all $a, b \in H$.

Proof. Suppose *H* is a subgroup, then $ab^{-1} \in H$ for all $a, b \in H$ by definition. Suppose we know that $ab^{-1} \in H$ for all $a, b \in H$. If a = b, then $e \in H$. If a = e, then every element in *H* has the inverse in *H*. The associativity works in *H*. For any $a, b \in H$, $ab = a(b^{-1})^{-1} \in H$. Thus *H* is a group.

For an element x in a group G, we use the notation

$$x^m := x \cdot x \cdots x \quad (m \text{ times})$$

for $m \in \mathbb{N}$. If m = 0, $x^m := E$. If m < 0, then $x^m = (x^{-1})^m$.

Definition 2.4. Let G a group and $x \in G$. The cyclic group $\langle x \rangle$ generated by x is a subgroup of G consists of x^m , $m \in \mathbb{Z}$.

Example 2.5. Let $G = \mathbb{Z}$ be a group with additon. What is $\langle 2 \rangle$?

Proposition 2.6. Let G a group and $x \in G$. The cyclic group $\langle x \rangle$ is the smallest subgroup containing x.

Definition 2.7. Let G, H be groups and $\varphi : G \to H$ a map. The map φ is called a homomorphism if it preserves the group structure, in a sense that $\varphi(xy) = \varphi(x)\varphi(y)$ for all $x, y \in G$.

Proposition 2.8. If φ is a homomorphism from G to H, then it maps the identity and inverses in G to the inverse and inverses in H.

Example 2.9. Consider a map $\varphi : \mathbb{Z} \to \mathbb{Z}$ defined by $x \mapsto 2x$. One can see that φ is a homomorphism.

Definition 2.10. An isomorphism is a bijective homomorphism. We say two groups are isomorphic if there is an isomorphism between the groups.

3. GROUPS OF TRANSFORMATIONS

Let \mathcal{V} a set. We have seen that the set of all bijections $\alpha : \mathcal{V} \to \mathcal{V}$ with compositions is a group, say G. In this section, we will see several subgroups of G. In particular, we are interested in the case $\mathcal{V} = \mathbb{R}^2$.

Theorem 3.1. Let \mathcal{T} be the set of all translations $\tau_A : \mathbb{R}^2 \to \mathbb{R}^2$, $A \in \mathbb{R}^2$. Then, \mathcal{T} with compositions is a group.

Proof. By the lemma, it suffices to show that for any $A, B \in \mathbb{R}^2$, $\tau_A \tau_B^{-1} \in \mathcal{T}$.

Definition 3.2. We call a bijection map $\alpha : \mathbb{R}^2 \to \mathbb{R}^2$ a dilatation if α is either a translation or a central dilatation.

Definition 3.3. We call a bijection map collineation if it maps a line to a parallel line.

As we have seen before, dilatations are collineation.

Theorem 3.4. *The set of all dilatations* D *with compositions forms a group.*

Proof. Since $(\tau_A)^{-1} = \tau_{-A}$ and $(\delta_{C,r})^{-1} = \delta_{C,1/r}$, it suffices to show that

(1) $\tau_A \tau_B \in \mathcal{D}$,

(2) $\tau_A \delta_{C,r} \in \mathcal{D}$,

- (3) $\delta_{C,r}\tau_A \in \mathcal{D}$,
- (4) $\delta_{C,r}\delta_{D,s} \in \mathcal{D}.$

We know that (1) is trivial and (3) follows from (2). Thus, it is enough to show (2) and (4). We first have

$$\tau_A \delta_{C,r}(X) = \tau_A((1-r)C + rX)$$
$$= (1-r)(\frac{1}{1-r}A + C) + rX$$
$$= \delta_{P,r}(X)$$

where $P = \frac{1}{1-r}A + C$. Also,

$$\delta_{C,r}\delta_{D,s}(X) = (1-r)C + r(1-s)D + rsX = \begin{cases} \tau_{(1-r)(C-D)}(X), & rs = 1, \\ \delta_{Q,rs}(X), & rs \neq 1, \end{cases}$$

where $Q = (1 - rs)^{-1}((1 - r)C + r(1 - s)D)$.

References

[T] Philippe Tondeur, Vectors and Transformations in Plane Geometry, Publish Or Perish, Inc. 1993

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN *E-mail address*:daesungk@illinois.edu