MATH 403 LECTURE NOTE
WEEK 7

DAESUNG KIM

1. GROUPS (SEC 2.6)
Definition 1.1. Let G be a set equipped with an operation (x,y) — xy € G forall z,y € G. We say G is a group
with the operation if

(1) There exsits an element e in G such that ex = xe = x for all v € G. We call e the identity.

(2) Forevery x € G, there is an element x~' € G such that zx=! =z 'z =e.

(3) Forall x,y,z € G, we have x(yz) = (zy)z.

Example 1.2. (1) The real numbers R with addtion is a group.
(2) The positive real numbers R with multiplication is a group.
(3) The integers Z with addtion is a group.
(4) The even integers 27 with addtion is a group.

Example 1.3. (1) The natural numbers N with addtion is NOT a group.
(2) The real numbers R with multiplication is NOT a group.
(3) The odd integers with addtion is NOT a group.

Definition 1.4. A group G is called commutative or abelian if xy = yx forall z,y € G.

Example 1.5. Let A be a set and G be the collection of all bijections f : A — A. Then, G with composition is a
non-abelian group. (Exercise)

Definition 1.6. Let n € Nand Z,, = {0,1,2,--- ,n — 1}. Define the addition and the multiplication on Z,, by the
residues left after division by n.

Example 1.7. One can see that Z,, with addition is a group.
Proposition 1.8. Let G be a group and « € G. Then, the identity and the inverse of x are unique.

Proposition 1.9. Let G be a group and a,b € G.
(1) The equation ax = b has a unigue solution x.
(2) The equation ya = b has a unique solution y.
Proposition 1.10 (Cancellation rules). Let G be a group.
(1) ax = ax’ implies x = '
(2) ya = y'aimpliesy = y/'.
Example 1.11. In Z12, 3z = 5 has no solution.

2. SUBGROUPS, CYCLIC GROUPS, AND ISOMORPHISM
Definition 2.1. Let G be a group and H a subset of G. If H is also a group itself, we call H a subgroup of G.
Example 2.2. (1) If G is a group and e € G is the identity, then {e} is a subgroup. This is called the trivial

subgroup.
(2) The even integers 27 is a subgroup of Z.

Lemma 2.3. Let G be a group and H a subset of G. Then H is a subgroup if and only if ab=' € H for all a,b € H.

Proof. Suppose H is a subgroup, then ab™' € H for all a,b € H by definition. Suppose we know that

ab ' € Hforalla,be H.Ifa = b, thene € H. If a = ¢, then every element in A has the inverse in H. The

associativity works in H. For any a,b € H, ab=a(b~')~! € H. Thus H is a group. |
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For an element z in a group G, we use the notation
2™ i=z-x---x (mtimes)
formeN.If m=0,2™:= E.If m <0, then 2™ = (z~1)™.

Definition 2.4. Let G a group and = € G. The cyclic group (x) generated by x is a subgroup of G consists of ™,
m € Z.

Example 2.5. Let G = Z be a group with addtion. What is (2)?
Proposition 2.6. Let G a group and x € G. The cyclic group (x) is the smallest subgroup containing x.

Definition 2.7. Let G, H be groups and ¢ : G — H a map. The map o is called a homomorphism if it preserves the
group structure, in a sense that p(xy) = ¢(z)p(y) forall z,y € G.

Proposition 2.8. If ¢ is a homomorphism from G to H, then it maps the identity and inverses in G to the inverse
and inverses in H.

Example 2.9. Consider a map ¢ : Z — 7Z defined by x — 2x. One can see that o is a homomorphism.

Definition 2.10. An isomorphism is a bijective homomorphism. We say two groups are isomorphic if there is an
isomorphism between the groups.

3. GROUPS OF TRANSFORMATIONS

Let V a set. We have seen that the set of all bijections « : V — V with compositions is a group, say G. In
this section, we will see several subgroups of G. In particular, we are interested in the case V = R2.

Theorem 3.1. Let T be the set of all translations 74 : R* — R?, A € R?. Then, T with compositions is a group.
Proof. By the lemma, it suffices to show that for any A, B € R?, 475" € T |
Definition 3.2. We call a bijection map o : R* — R? a dilatation if o is either a translation or a central dilatation.
Definition 3.3. We call a bijection map collineation if it maps a line to a parallel line.

As we have seen before, dilatations are collineation.
Theorem 3.4. The set of all dilatations D with compositions forms a group.

Proof. Since (14)~! = 7_4 and (6¢,r) "' = c,1/,, it suffices to show that
(1) a7 €D,
(2) TA(sC,r € D/
) dc,r7a €D,
4) 6cr6p,s €D.
We know that (1) is trivial and (3) follows from (2). Thus, it is enough to show (2) and (4). We first have

TA0C(X) = Ta((1 = 7)C +1X)
1
=0p,(X)
where P = ﬁA + C. Also,

Ta-rc-p)(X), rs=1,
Scrdp (X)) =1 —7)C+7r(1—8)D+rsX =<
CrOD,: ( ) ( T) T( S) " {5Q’7‘8(X)7 s 7é 17

where Q = (1 —rs)"'((1 —r)C +r(1 —s)D). [ |
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