MATH 403 FALL 2021: HOMEWORK 10 SOLUTION

INSTRUCTOR: DAESUNG KIM
DUE DATE: DEC 6, 2021

Note: The problems 2, 3, 5, 8, 10 will only be graded.

1. Let α be an isometry and ℓ be a line. Show that $\sigma_{\alpha(\ell)}=\alpha \sigma_{\ell} \alpha^{-1}$.

Solution: Let $\beta=\alpha \sigma_{\ell} \alpha^{-1}$. Note that β is not the identity. Since $\beta^{2}=\left(\alpha \sigma_{\ell} \alpha^{-1}\right) \circ\left(\alpha \sigma_{\ell} \alpha^{-1}\right)=$ $\alpha \sigma_{\ell} \alpha^{-1}=\beta$, it is involutive. Let $Y \in \alpha(\ell)$, then there exists $X \in \ell$ such that $\alpha(X) \in \alpha(\ell)$. Since $\sigma_{\ell}(X)=X$, we have

$$
\beta(Y)=\alpha \sigma_{\ell} \alpha^{-1}(Y)=\alpha \sigma_{\ell} \alpha^{-1}(\alpha(X))=\alpha \sigma_{\ell}(X)=\alpha(X)=Y
$$

Therefore, β is the reflection in $\sigma(\ell)$.
2. Exercise 4.2

Solution: Let $\gamma=\alpha^{-1} \circ \beta$, then

$$
\gamma(A)=A, \quad \gamma(B)=B, \quad \gamma(C)=C .
$$

Since A, B, C are collinear, we have $\gamma=\mathrm{Id}$, which implies $\alpha=\beta$.
3. Exercise 4.5: Let α be an isometry. Suppose that $\alpha \sigma_{\ell}=\sigma_{\ell} \alpha$ holds for any line ℓ. Show that α is the identity map.

Solution: Let $X \in \mathbb{R}^{2}$. Choose two different lines ℓ_{1}, ℓ_{2} such that both lines contain X. For each $i=1,2$,

$$
\alpha(X)=\alpha \sigma_{\ell_{i}}(X)=\sigma_{\ell_{i}} \alpha(X)=\sigma_{\ell_{i}}(\alpha(X))
$$

which implies that $\alpha(X)$ is a fixed point of $\sigma_{\ell_{i}}$. Thus, $\alpha(X) \in \ell_{1} \cap \ell_{2}$. Therefore, we conclude that $\alpha(X)=X$, as desired.
4. Exercise 4.7: Let ℓ_{1}, ℓ_{2} be lines with $\ell_{1} \perp \ell_{2}$. Show that $\sigma_{\ell_{1}} \sigma_{\ell_{2}}=\sigma_{C}$ for some $C \in \mathbb{R}^{2}$.

Solution: Let $X \in \mathbb{R}^{2}, Y=\sigma_{\ell_{2}}(X)$, and $Z=\sigma_{\ell_{1}}(Y)$. Since $|C-X|=|C-Y|=|C-Z|$, we see that C is the circumcenter of $\triangle X Y Z$. Since ℓ_{1} is perpendicular to $\ell_{2}, \triangle X Y Z$ is a right triangle. Thus, C is the midpoint of the hypotenuse, that is, $C=\frac{1}{2}(X+Z)$.
5. Exercise 4.9

Solution: We have

$$
\begin{array}{ll}
& \sigma_{\ell} \sigma_{B} \sigma_{\ell} \sigma_{A}=\mathrm{Id} \\
\Leftrightarrow & \sigma_{\sigma_{\ell}(B)}=\sigma_{A} \\
\Leftrightarrow & \sigma_{\ell}(B)=A .
\end{array}
$$

By the definition of σ_{ℓ}, the last statement is equivalent to that ℓ is the perpendicular bisector of $\overline{A B}$.
6. Exercise 4.10

Solution: We have

$$
\begin{array}{ll}
& \sigma_{B} \sigma_{\ell} \sigma_{B} \sigma_{A} \sigma_{\ell} \sigma_{A}=\mathrm{Id} \\
\Leftrightarrow & \sigma_{\sigma_{B}(\ell)}=\sigma_{\sigma_{A}(\ell)} \\
\Leftrightarrow & \sigma_{B}(\ell)=\sigma_{A}(\ell) \\
\Leftrightarrow & \ell=\sigma_{A} \sigma_{B}(\ell) .
\end{array}
$$

Suppose ℓ is parallel to $\overline{A B}$ and $X \in \ell$. Let $Y=\sigma_{B} \sigma_{A}(X)$. Since

$$
X-Y=X-(2 B-(2 A-X))=2(A-B)
$$

$Y \in \ell$. Since $\sigma_{A} \sigma_{B}(Y)=X$, we conclude that $\ell \subseteq \sigma_{A} \sigma_{B}(\ell)$. Similarly, one can show the opposite direction and conclude that $\ell=\sigma_{A} \sigma_{B}(\ell)$.

Suppose $\ell=\sigma_{A} \sigma_{B}(\ell)$. Let $X \in \ell$. If $X=\sigma_{A} \sigma_{B}(X)$, then $A=B$, which is a contradiction. Thus, $Y:=\sigma_{A} \sigma_{B}(X) \in \ell$ and $X \neq Y$. Since

$$
X-Y=X-(2 A-(2 B-X))=-2(A-B)
$$

we conclude that ℓ is parallel to $\overline{A B}$.
7. Exercise 4.11

Solution: Let ℓ be the line perpendicular to m and n and $M \in \ell \cap m$ and $N \in \ell \cap n$. Then, we know that

$$
\sigma_{n} \sigma_{m}=\tau_{2(N-M)}, \quad \sigma_{m} \sigma_{n}=\tau_{2(M-N)} .
$$

Thus, $\sigma_{n} \sigma_{m}=\sigma_{m} \sigma_{n}$ if and only if $\tau_{2(N-M)}=\tau_{2(M-N)}$ iff $N=M$ iff $m=n$.
8. Exercise 4.12

Solution: For any $X \in \mathbb{R}^{2}$,

$$
X+\tau_{A} \sigma_{P}(X)=X+A+(2 P-X)=A+2 P
$$

Thus,

$$
\tau_{A} \sigma_{P}(X)=(A+2 P)-X=\sigma_{C}(X)
$$

where $C=\frac{1}{2}(A+2 P)$. The second assertion is similar.
9. Exercise 4.13

Solution: By Exerise 4.12, we know that $\tau_{A}=\sigma_{P} \sigma_{Q}$ where $P \in \mathbb{R}^{2}$ and $Q=\frac{1}{2}(2 P-A)$. Then,

$$
\alpha \tau_{A} \alpha^{-1}=\alpha \sigma_{P} \sigma_{Q} \alpha^{-1}=\alpha \sigma_{P} \alpha^{-1} \alpha \sigma_{Q} \alpha^{-1}=\sigma_{\alpha(P)} \sigma_{\alpha(Q)}=\tau_{R}
$$

where $R=2(\alpha(P)-\alpha(Q))$. If α is linear isometry, then

$$
R=2(\alpha(P)-\alpha(Q))=\alpha(2 P-2 Q)=\alpha(A)
$$

10. Let α be a rotation with center $C \in \mathbb{R}^{2}$ through the oriented angle $\theta \in(-\pi, \pi]$ and ℓ be a line. Suppose α is not the identity map and $\alpha(\ell)=\ell$. Show that α is the central reflection in C.

Solution: This is Theorem 4.32 (pg. 96).

