MATH 403 FALL 2021: QUIZ 7 SOLUTION
 DATE: OCT 27, 2021

Let $A, B, C, D \in \mathbb{R}^{2}$ with $A \neq B$ and $C \neq D$.
(a) (5 points) Write the definition that two lines $\ell_{A B}$ and $\ell_{C D}$ are perpendicular.

Solution. Two lines $\ell_{A B}$ and $\ell_{C D}$ are perpendicular if $(A-B) \cdot(C-D)=0$.
(b) (5 points) Let α be a dilatation (that is, either a translation or a central dilatation). Suppose $\ell_{A B}$ and $\ell_{C D}$ are perpendicular. Show that $\alpha\left(\ell_{A B}\right)$ is also perpendicular to $\ell_{C D}$.

Solution. We already know that $\alpha\left(\ell_{A B}\right)=\ell_{\alpha(A) \alpha(B)}$ and $\alpha(A)-\alpha(B)=t(A-B)$ for some t. Since the two lines are perpendicular, we have

$$
(\alpha(A)-\alpha(B)) \cdot(C-D)=t(A-B) \cdot(C-D)=0,
$$

which completes the proof.

