MATH 403 FALL 2021: HOMEWORK 7 SOLUTION

INSTRUCTOR: DAESUNG KIM
DUE DATE: OCT 29, 2021

1. Exercise 3.3

Solution: Without loss of generality, we consider $\triangle O A B$ with $\left|A-A^{\prime}\right|=\left|B-B^{\prime}\right|, A^{\prime}=B / 2$, $B^{\prime}=A / 2$. Thus,

$$
\left|A-A^{\prime}\right|^{2}=|A|^{2}-A \cdot B+|B|^{2} / 4=|B|^{2}-A \cdot B+|A|^{2} / 4=\left|B-B^{\prime}\right|^{2}
$$

which implies $|A|^{2}=|B|^{2}$ as desired.
2. Exercise 3.4

Solution: Suppose $A \cdot X$ for all $X \in \mathbb{R}^{2}$. In particular, if $X=A$, then $|A|^{2}=0$. We have seen that $|A|=0$ if and only if $A=O$, which completes the proof.
3. Exercise 3.5

Solution: Suppose $A, B \neq O$ and $A \cdot B=0$. Assume that $O \in \ell_{A B}$, then there exists $a, b \in \mathbb{R}$ such that $a+b=1$ and $a A+b B=O$. Since either $a \neq 0$ or $b \neq 0$, suppose $a \neq 0$ WLOG. Then, $A=-\frac{b}{a} B$. Thus,

$$
A \cdot B=-\frac{b}{a}|B|^{2}
$$

Since $B \neq O$, we have $b=0$. But, $a A+b B=a A=O$ implies that $A=O$ which contradicts to the assumption. Thus, $O \notin \ell_{A B}$.
4. Exercise 3.7

Solution: Let H be the orthocenter and K be the circumcenter. We have seen that $H=\delta_{G,-2}(K)$, where G is the centroid. Thus,

$$
H=(1-(-2)) G-2 K=A+B+C-2 K
$$

Since

$$
A^{\prime}+A^{\prime \prime}=\frac{1}{2}(B+C)+\frac{1}{2}(H+A)=\frac{1}{2}(A+C)+\frac{1}{2}(H+B)=B^{\prime}+B^{\prime \prime}
$$

we see that $A^{\prime \prime} B^{\prime \prime} A^{\prime} B^{\prime}$ is a parallelogram. Also,

$$
\begin{aligned}
\left|B^{\prime}-B^{\prime \prime}\right| & =\left|\frac{1}{2}(A+C)-\frac{1}{2}(H+B)\right| \\
\left|A^{\prime}-A^{\prime \prime}\right| & =\left|\frac{1}{2}(B+C)-\frac{1}{2}(H+A)\right|
\end{aligned}
$$

Since K is the circumcenter, $|B-K|=|A-K|$. Since the diagonals have the same length, $A^{\prime \prime} B^{\prime \prime} A^{\prime} B^{\prime}$ is a rectangle.
5. Exercise 3.9

Solution: If X satisfies $|X-A|=r|X-B|$, then

$$
\begin{aligned}
|X|^{2}-2 A \cdot X+|A|^{2} & =r^{2}\left(|X|^{2}-2 B \cdot X+|B|^{2}\right), \\
\left(1-r^{2}\right)|X|^{2}-2\left(A-r^{2} B\right) \cdot X+\left(1-r^{2}\right)^{-1}\left|A-r^{2} B\right|^{2} & =r^{2}|B|^{2}-|A|^{2}+\left(1-r^{2}\right)^{-1}\left|A-r^{2} B\right|^{2}, \\
\left(1-r^{2}\right)\left|X-\left(1-r^{2}\right)^{-1}\left(A-r^{2} B\right)\right|^{2} & =\frac{r^{2}}{1-r^{2}}|A-B|^{2} .
\end{aligned}
$$

Therefore, X belongs to the circle with radius $r\left|1-r^{2}\right|^{-1}|A-B|$ and center $\left(1-r^{2}\right)^{-1}\left(A-r^{2} B\right)$.

